用户名: 密码: 验证码:
含水率及坡度对红壤丘陵区崩岗崩壁重力侵蚀影响规律的有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on influence of water content and slope gradient ongravitational erosion of collapsing gully wall in red soil hillyregion with finite element method(FEM)
  • 作者:马鹏飞 ; 夏栋 ; 许文年 ; 丁瑜 ; 程虎 ; 邓羽松
  • 英文作者:MA Pengfei;XIA Dong;XU Wennian;DING Yu;CHENG Hu;DENG Yusong;College of Civil Engineering and Architecture, China Three Gorges University;College of Hydraulic and Environmental Engineering, China Three Gorges University;Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education;College of Biology and Pharmacy, China Three Gorges University;College of Resources and Environment, Huazhong Agricultural University;
  • 关键词:花岗岩崩岗崩壁 ; 有限元强度折减法 ; 重力侵蚀 ; 含水率 ; 坡度 ; 潜在滑动面 ; 安全系数 ; 定量关系式
  • 英文关键词:granite collapsing gully wall;;finite element strength reduction method(SRM);;gravitational erosion;;moisture content;;slope gradient;;potential sliding surface;;safety factor;;quantitative relation formula
  • 中文刊名:SJWJ
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:三峡大学土木与建筑学院;三峡大学水利与环境学院;三峡库区生态环境教育部工程研究中心;三峡大学生物与制药学院;华中农业大学资源与环境学院;
  • 出版日期:2019-05-20
  • 出版单位:水利水电技术
  • 年:2019
  • 期:v.50;No.547
  • 基金:长江科学院开放研究基金资助项目(CKWV2016387/KY);; 国家自然科学基金资助项目(41601287,41630858)
  • 语种:中文;
  • 页:SJWJ201905026
  • 页数:14
  • CN:05
  • ISSN:11-1757/TV
  • 分类号:217-230
摘要
花岗岩崩岗区崩壁的坍塌、崩落,主要是由于崩壁岩土体存在裂隙,在雨水作用下,由重力作用引发崩壁失去稳态而崩塌,含水率和坡度是影响崩壁重力侵蚀(稳定性)的重要因素。为系统探索不同坡度的崩岗崩壁剖面在降雨或干旱环境下的稳定性情况,结合对湖北省通城县室内浸泡或风干不同时间的崩壁土体进行直剪试验得出的强度初始参数,选取8种分析坡度,采用Abaqus有限单元强度折减法计算了不同坡度的崩壁在不同含水率下的安全系数和潜在滑动面。结果表明:在同一含水率下,随着崩壁坡度的增大,坡度对临界滑动面位置变化的影响程度减小,安全系数非线性降低;在同一坡度下,随着崩壁含水率的增大,安全系数先增大后减小,含水率对临界滑动面的影响程度先减小后增大再减小,且影响比较显著。通过数据描点发现安全系数与整体含水率之间存在三次函数关系,与坡度之间呈对数型函数分布,并建立了安全系数与整体含水率和坡度之间的一般定量关系式。综合分析崩壁的破坏方式可知,当崩壁较缓时,崩壁滑动面呈圆弧滑移状,失稳类型属于滑移破坏型;当崩壁较陡(尤其>60°)时,滑动面近似直线状,失稳属于崩塌破坏型。坡度越大,张拉破坏区向土体内部延伸的深度越大,越易崩塌。通过查阅文献并与前人的研究成果做对比,来验证数值计算结果的合理性与适用性。成果可为崩岗灾害的防治体系建设提供借鉴。
        The instabilities of the collapse wall profiles in granite collapse region are mainly due to the infiltration of rainwater into the cracks in the back edge of the headwall in the early stage, which softens the mechanical strength of surface soil mass of caved wall, and then the collapse of collapsing gully wall will occur under the action of gravity. The slope gradient has a certain effect on the collapsing mound gravitational erosion, and water content is one significant factor affecting the stability of the collapse wall as well. In order to comprehensively explore the relationship between moisture content or slope gradient and gravitational erosion(stability) of collapse gully profiles, we design eight kinds of analysis slope gradients combined with field investigation and conduct natural air drying or water immersion tests for different periods on the collected soil mass of collapsing gullies in Tongcheng County, subsequently, obtaining finite element calculation parameters through geotechnical tests of soil samples. By means of SRM based on ABAQUS software platform, we calculate the safety factor(denoted as F_s) and potential sliding surface of collapse mound profiles respectively under forty-eight working conditions. The results demonstrate that:(1)when controlling water content remains unchanged, the influence level of slope gradient on the change of critical sliding surface position of the collapsing gully profile decreases gradually along with the increase of slope gradient,while a logarithmic function relationship is there between the F_s of collapse wall and slope gradient;(2)under the condition that slope gradient is maintained at a constant value, the influence degree of moisture content on sliding surface decreases with the increase of moisture content of the collapsing gully wall, then increases and finally reduces, which is obvious to some extent. Based on discovering the existence of cubic function distribution between F_s and integral moisture content via fitting the data, we further establish the general quantitative formula for estimating F_s utilizing integral moisture content and slope gradient through careful deduction;(3)by probing further into the failure types of collapse wall comprehensively thus come to conclusion that when slope gradient is less than a certain value, potential sliding surface of collapsing mound profile appears a circular arc shape, instability mode belongs to the sliding failure type;when the collapsing gully wall is steeper comparatively(especially when slope gradient exceed 60 degrees),sliding surface exhibits approximately linear sliding surface, instability mode belongs to the collapsing type. The greater the slope gradient is, the greater the depth of the tensile failure zone to the interior of the soil is, and the more likely it is to collapse. At last, the reasonableness and practicability of the numerical results are identified by comparative analyses between the previous research findings and measured data through referring to related academic articles. The study achievements shows clearly an unambiguous direction and technical guidance for the prevention and control measures of collapsing gullies.
引文
[1] XIA D,DENG Y S,WANG S L,et al.Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region,south China[J].Natural Hazards,2015,79(1):455- 478.
    [2] DENG Y S,CAI C F,XIA D,et al.Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China[J].Solid Earth,2017,8:1- 35.
    [3] DENG Y S,CAI C F,XIA D,et al.Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China[J].Plos One,2017,12(3):e0173555.
    [4] XIA D,DING S W,LONG L,et al.Effects of collapsing gully erosion on soil qualities of farm fields in the hilly granitic region of South China[J].Journal of Integrative Agriculture,2016,15(12):2873- 2885.
    [5] DENG Y S,XIA D,CAI C F,DING S W.Effects of land uses on soil physic-chemical properties and erodibility in collapsing-gully alluvial fan of Anxi County,China[J].Journal of Integrative Agriculture,2016,15(8):1863- 1873.
    [6] 张晓明,丁树文,蔡崇法,等.干湿效应下崩岗岩土不均匀沉降变形规律与崩壁崩坍机制[J].岩土力学,2013,34(S2):299- 305.
    [7] STOLTE J,RITSEMA C J,ROO A P J D.Effects of crust and cracks on simulated catchment discharge and soil loss[J].Journal of Hydrology,1997,195(1- 4):279- 290.
    [8] 丘世钧.红土坡地崩岗侵蚀过程与机理[J].水土保持通报,1994,14(6):31- 40.
    [9] 张晓明,丁树文,蔡崇法.干湿效应下崩岗区岩土抗剪强度衰减非线性分析[J].农业工程学报,2012,28(5):241- 245.
    [10] 林敬兰,黄炎和,张德斌,等.水分对崩岗土体抗剪切特性的影响[J].水土保持学报,2013,27(3):55- 58.
    [11] 夏振刚,邓羽松,赵媛,等.鄂东南花岗岩崩岗岩土抗剪强度与含水量的关系[J].中国水土保持科学,2016,14(6):26- 34.
    [12] 陈祯,任兵芳,丁树文,等.鄂东南花岗岩崩岗边坡稳定性研究[J].人民长江,2014,45(s2):109- 111.
    [13] 周作旺.浅析地下水对崩岗形成的作用[J].广西水利水电,2000(3):55- 58.
    [14] 叶龙珍,黄聿銮,柳侃,等.崩岗与滑坡泥石流对比研究[J].亚热带水土保持,2014,26(4):39- 42.
    [15] 陈培波,刘希林.中国崩岗研究进展的文献计量分析[J].热带地理,2015,35(6):895- 900.
    [16] 夏栋.南方花岗岩区崩岗崩壁稳定性研究[D].武汉:华中农业大学,2015.
    [17] 孙妍.鄂东南崩岗侵蚀特征及其监测数据管理系统的研究[D].武汉:华中农业大学,2012.
    [18] 张晓咏,戴自航.应用ABAQUS程序进行渗流作用下边坡稳定分析[J].岩石力学与工程学报,2010,29(S1):2927- 2934.
    [19] 李宁,郭双枫,姚显春.再论岩质高边坡稳定性分析方法[J].岩土力学,2018,39(2):397- 406.
    [20] 费康,彭劼.ABAQUS岩土工程实例讲解[M].北京:人民邮电出版社,2017.
    [21] 李思平.广东省崩岗侵蚀规律和防治的研究[J].自然灾害学报,1992,1(3):68- 74.
    [22] 姜超,陈志彪,陈志强.我国崩岗侵蚀与国外劣地侵蚀机制类比[J].中国水土保持科学,2014,12(6):116- 122.
    [23] 黄圣伟.福建省花岗岩地区崩岗形成机理与数值模拟[D].福州:福州大学,2009.
    [24] 周文华.崩岗区土侵蚀因素及其边坡稳定性研究[D].南昌:南昌大学,2015.
    [25] 郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,21(3):1- 6.
    [26] 戴自航,刘志伟,刘成禹,等.考虑张拉与剪切破坏的土坡稳定数值分析[J].岩石力学与工程学报,2008,27(2):375- 382.
    [27] SMITH I M,GRIFFITHS D V.Programming The Finite Element Method[M].New York:John Wiley and Sons,2004.
    [28] 魏玉杰,吴新亮,蔡崇法.崩岗体剖面土壤收缩特性的空间变异性[J].农业机械学报,2015,46(6):153- 159.
    [29] 阮伏水.福建崩岗侵蚀机理初探[J].亚热带水土保持,1991(4):33- 37.
    [30] 丁树文,蔡崇法,张光远.鄂东南花岗地区重力侵蚀及崩岗形成规律的研究[J].南昌水专学报,1995(S1):50- 54.
    [31] 许文年,夏栋,赵冰琴,等.水电工程扰动区植被生态修复技术研究[M].北京:科学出版社,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700