用户名: 密码: 验证码:
黔西煤矿区土壤重金属污染水平及其形态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil Heavy Metal Pollution Degrees and Metal Chemical Forms Around the Coal Mining Area in Western Guizhou
  • 作者:吴先亮 ; 黄先飞 ; 李朝婵 ; 胡继伟 ; 唐凤华 ; 张泽东
  • 英文作者:WU Xianliang;HUANG Xianfei;LI Chaochan;HU Jiwei;TANG Fenghua;ZHANG Zedong;Guizhou Provincial Key Laboratory Information System of Mountainous Areas and Protection of Ecological Environment,Guizhou Normal University;Institute of China Karst,Guizhou Normal University;
  • 关键词:煤矿区 ; 重金属 ; 潜在生态危害 ; 地累积指数 ; 改性灰色聚类
  • 英文关键词:coal mining area;;heavy metals;;potential ecological risk;;index of geo-accumulation;;modified grey clustering
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:贵州师范大学贵州省山地环境信息系统与生态环境保护重点实验室;贵州师范大学喀斯特研究院;
  • 出版日期:2018-10-26
  • 出版单位:水土保持研究
  • 年:2018
  • 期:v.25;No.131
  • 基金:贵州省林业厅项目(黔林科合[2016]09);; 贵州省科技厅联合基金(LH[2016]7203);; 国家111项目(D17016)
  • 语种:中文;
  • 页:STBY201806049
  • 页数:7
  • CN:06
  • ISSN:61-1272/P
  • 分类号:339-345
摘要
为研究黔西煤矿区周边土壤重金属污染情况及其潜在生态环境危害,分别在黔西煤矿区及非矿区进行了土壤样品采集,分析了研究区土壤重金属(Hg,Cd,As,Pb,Cr,Zn,Ni)污染水平,并采用了改进的Tessier法对重金属形态进行分析,应用地累积指数法及改性灰色聚类法进行了重金属风险评价。结果显示:煤矿区Hg,Cd,As,Cr,Zn及Ni平均值含量分别是贵州省背景值的3.37,1.11,1.50,1.63,1.23,1.73倍;非煤矿区As和Hg平均值含量分别是贵州省背景值的2.37,1.83倍。煤矿区受Hg及Cd污染较严重,而非煤矿区Hg和As污染也较为严重。研究区除3号样点外,其他样点均受到不同程度的污染;Hg,Cd及As为研究区污染贡献最大的3个因素,这与地累积指数法评价结果一致。研究区Cr,Cu及Zn以残渣态为主,稳定性较高,对环境影响最低;Cd及Pb非残渣态比例较高,对环境潜在危害较大,应当高度重视研究区Cd及Pb污染。
        In order to investigate the soil heavy metal pollution and evaluate the potential ecological risk of the coal mining area in Qianxi,soil samples were collected in mining areas and non-mining area,respectively.Concentrations of heavy metals(Hg,Cd,As,Pb,Cr,Zn and Ni)in soil samples were determined.Meanwhile,the chemical forms of heavy metals were analyzed using Tessier′s sequential extraction procedure.The heavy metal risk in the study area was evaluated by the method of geo-accumulation index and the modified grey clustering.The result revealed that the average contents of Hg,Cd,As,Cr,Zn and Ni in coal mining areas were 3.37,1.11,1.50,1.63,1.23 and 1.73 times of the background values of Guizhou Province,respectively.The average contents of As and Hg in non-coal mining area were 2.37 and 1.83 times of the background values of Guizhou Province,respectively.The result from geo-accumulation index showed that the pollution of Hg and Cd was serious in the coal mining area,and Hg and As pollution was serious in non-mining areas.The results of the modified grey clustering showed that the other soils were polluted to different degrees except for the soil sample No.3.Hg,Cd and As were primary contributors to the pollution in the study area,which is consistent with result from the method of geo-accumulation index.Cr,Cu and Zn mainly existed as residual fraction with high stability and low risk in the environment.In addition,Cd and Pb had the high environmental risk due to their high release ability.Great attention should be paid to Cd and Pb pollution.
引文
[1]Finkelman R B,Gross P M K.The types of data needed for assessing the environmental and human health impacts of coal[J].International Journal of Coal Geology,1999,40:91-101.
    [2]Dinelli E,Tateo F.Factors controlling heavy-metal dispersion in mining areas:the case of Vigonzano(northern Italy),a Fe-Cu sulfide deposit associated with ophiolitic rocks[J].Environmental Geology,2001,40(9):1138-1150.
    [3]Teixeira E,Ortiz L,Alves M,et al.Distribution of selected heavy metals in fluvial sediments of the coal mining region of Baixo Jacuí,RS,Brazil[J].Environmental Geology,2001,41(1):145-151.
    [4]姚世厅,赵峰华,黄勇,等.北京市大台煤矿区土壤重金属污染及风险评价[J].环境科学与技术,2016(S2):429-436.
    [5]贾亚琪,程志飞,刘品祯,等.煤矿区周边农田土壤重金属积累特征及生态风险评价[J].土壤通报,2016,47(2):474-479.
    [6]刘硕,吴泉源,曹学江,等.龙口煤矿区土壤重金属污染评价与空间分布特征[J].环境科学,2016,37(1):270-279.
    [7]黄先飞,秦樊鑫,胡继伟.重金属污染与化学形态研究进展[J].微量元素与健康研究,2008,25(1):48-51.
    [8]Huang X,Hu J,Li C,et al.Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake,Guizhou,P.R.China[J].International Journal of Environmental Health Research,2009,19(6):405-419.
    [9]僮祥英,杨玉琼,刘红.百里杜鹃矿区附近土壤重金属潜在生态风险及环境容量研究[J].安徽农业科学,2011,39(4):2146-2148.
    [10]乙引,陈训,陈雪鹃,等.贵州百里杜鹃国家森林公园综合科学考察[M].北京:科学出版社,2016.
    [11]张静,姬亚芹,王伟,等.应用地累积指数评价鞍山市夏季PM2.5中元素的污染[J].环境工程学报,2016,10(5):2551-2556.
    [12]窦磊,周永章,王旭日,等.针对土壤重金属污染评价的模糊数学模型的改进及应用[J].土壤通报,2007,38(1):101-105.
    [13]范明毅,杨皓,黄先飞,等.典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J].中国环境科学,2016,36(8):2425-2436.
    [14]罗成科,毕江涛,肖国举,等.宁东基地不同工业园区周边土壤重金属污染特征及其评价[J].生态环境学报,2017,26(7):1221-1227.
    [15]Moore F,Nematollahi M J,Keshavarzi B.Heavy metals fractionation in surface sediments of Gowatr bayIran[J].Environmental Monitoring&Assessment,2015,187(1):1-14.
    [16]罗国兵.冷原子吸收光谱法测定污水中总汞的两种消解方法比较[J].理化检验:化学分册,2005,41(3):167-168.
    [17]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [18]刘丹丹,刘菲,缪德仁.土壤重金属连续提取方法的优化[J].现代地质,2015,29(2):390-396.
    [19]彭景,李泽琴,侯家渝.地积累指数法及生态危害指数评价法在土壤重金属污染中的应用及探讨[J].广东微量元素科学,2007,14(8):13-17.
    [20]F9rstner U,Müller G.Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments:geochemical background,man′s influence and environmental impact[J].Geojournal,1981,5:417-432.
    [21]李娟娟,马金涛,杨占军,等.矿区农用复垦地土壤重金属污染评价[J].能源环境保护,2006,20(3):61-64.
    [22]谭晓莲,施泽明,罗改.重金属毒性权重赋值的土壤地球化学质量模糊综合评价:以内江市白马镇为例[J].安徽农业科学,2008,36(25):11013-11016.
    [23]杨皓,胡继伟,黄先飞,等.喀斯特地区金刺梨种植基地土壤肥力研究[J].水土保持研究,2015,22(3):50-55.
    [24]林绍霞,张清海,郭媛,等.贵州草海沉积物重金属污染特征及潜在生态风险分析[J].农业环境科学学报,2012,31(11):2236-2241.
    [25]宋以龙,曾艳,杨海全,等.贵州草海沉积物重金属时空分布特征与生态风险评价[J].生态学杂志,2016,35(7):1849-1856.
    [26]范春辉,张颖超,王家宏.基于Tessier-AAS法的华中大农区污染红土Pb赋存形态非生物转化机制研究[J].光谱学与光谱分析,2015,35(2):534-539.
    [27]徐长林.涉铅污染土壤重金属地球化学形态、风险及其微生物修复基础[D].西安:陕西师范大学,2015.
    [28]雷鸣,廖柏寒,秦普丰.土壤重金属化学形态的生物可利用性评价[J].生态环境学报,2007,16(5):1551-1556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700