用户名: 密码: 验证码:
喀斯特洞穴甲烷研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progresses of Methane in Karst Caves
  • 作者:曾广能 ; 罗维均 ; 王彦伟 ; 李勇 ; 王世杰
  • 英文作者:ZENG Guangneng;LUO Weijun;WANG Yanwei;LI Yong;WANG Shijie;School of Eco-Environmental Engineering,Guizhou Minzu University;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;Puding Karst Ecosystem Research Station,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:喀斯特洞穴 ; 甲烷 ; 源汇关系 ; 碳汇机制 ; 通量
  • 英文关键词:karst cave;;methane;;source-sink relationship;;consumption mechanism;;flux
  • 中文刊名:DZDQ
  • 英文刊名:Earth and Environment
  • 机构:贵州民族大学生态环境工程学院;中国科学院地球化学研究所环境地球化学国家重点实验室;中国科学院普定喀斯特生态系统观测研究站;中国科学院大学;
  • 出版日期:2019-03-16 10:09
  • 出版单位:地球与环境
  • 年:2019
  • 期:v.47;No.328
  • 基金:国家重点研发计划项目(2016YFC0502300);; 国家自然科学基金项目(41663015);; 贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]159);; 贵州民族大学引进人才科研基金资助项目(16yjrcxm023)
  • 语种:中文;
  • 页:DZDQ201902014
  • 页数:8
  • CN:02
  • ISSN:52-1139/P
  • 分类号:118-125
摘要
甲烷是最主要的温室气体之一。此前对全球甲烷进行了大量的观测和模拟研究,但在源汇关系和通量的认识上仍存在较大的不确定性。近期研究发现,广泛分布的喀斯特地下空间(洞穴和裂隙等)是大气甲烷重要的汇;其作用机制主要有微生物氧化作用和物理化学作用,但对二者的影响大小认识不足;喀斯特洞穴甲烷碳库大小及其对喀斯特生态系统的影响认识尚不清楚。下一步工作应该加强洞穴甲烷的系统研究,分析甲烷的碳汇机制以及估算碳库大小;同时,加强喀斯特生态系统大气、土壤和洞穴甲烷通量的研究,以揭示喀斯特地下空间对生态系统碳循环的影响。
        Methane is one of the most potential greenhouse gases. A large number of monitoring and simulating studies have been carried on global methane and uncertainties still exist in source-sink relationship and fluxes among different reservoirs. Recent studies indicate that subterranean environments( include caves,fractures,et al.) distributed widely in karst zone are important sinks of atmospheric methane. The mechanisms of methane sink are thought to be microbial oxidation and physiochemical oxidation,but little is known about their effectiveness. Also,the sizes of cave air methane pool and its impacts on karst ecosystems are unclear. Therefore,it is necessary to catch up with scientific studies on consumption mechanisms and methane reservoirs of karst caves. Meanwhile,studies on methane fluxes of atmosphere,soil and cave in karst ecosystems are fundamental in revealing the influences of karst subterranean atmosphere on regional methane cycle.
引文
[1] Bartlett K B and Harriss R C. Review and assessment of methane emissions from wetlands[J]. Chemosphere,1993,26(93):261-320.
    [2] Sowers T. Atmospheric methane isotope records covering the Holocene period[J]. Quaternary Science Reviews,2010,29(1–2):213-221.
    [3] Yang J W,Ahn J,Brook E J,et al. Atmospheric methane control mechanisms during the early Holocene[J]. Climate of the Past Discussions,2016:1-22.
    [4] Singarayer J S,Valdes P J,Friedlingstein P,et al. Late Holocene methane rise caused by orbitally controlled increase in tropical sources[J]. Nature,2011,470(7332):82-85.
    [5] Sapart C J,Monteil G,Prokopiou M,et al. Natural and anthropogenic variations in methane sources during the past two millennia[J]. Nature,2012,490(7418):85-88.
    [6] Ruddiman W F,Guo Z,Zhou X,et al. Early rice farming and anomalous methane trends[J]. Quaternary Science Reviews,2008,27(13-14):1291-1295.
    [7] Macfarling Meure C,Etheridge D,Trudinger C,et al. Law Dome CO2,CH4and N2O ice core records extended to 2000 years BP[J]. Geophysical Research Letters,2006,33(14):70-84.
    [8] Ghosh A,Patra P K,Ishijima K,et al. Variations in global methane sources and sinks during 1910-2010[J]. Atmospheric Chemistry&Physics,2015,15(5):2595-2612.
    [9]吴海宝.大气中甲烷起源、演化、归宿过程及其环境效应[J].农业环境科学学报,1990(5):10-14.
    [10]王文兴,谢英,林子瑜,等.甲烷光氧化反应速率常数及其在大气中的寿命[J].中国环境科学,1995(4):258-261.
    [11] Whalen S C and Reeburgh W S. Consumption of atmospheric methane by tundra soils[J]. Nature,1990,346(6280):160-162.
    [12] King S L,Quay P D,Lansdown J M. The13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations[J].Journal of Geophysical Research Atmospheres,1989,94(15):18273-18277.
    [13] Roslev P,Iversen N,Henriksen K. Oxidation and assimilation of atmospheric methane by soil methane oxidizers[J]. Applied&Environmental Microbiology,1997,63(3):874-880.
    [14]翟俊,马宏璞,陈忠礼,等.湿地甲烷厌氧氧化的重要性和机制综述[J].中国环境科学,2017,37(9):3506-3514.
    [15] Dlugokencky E J,Nisbet E G,Fisher R,et al. Global atmospheric methane:Budget,changes and dangers[M]. Philosophical Transactions. Series A:Mathematical,Physica and Engineering Sciences,2011(1943):2058-2072.
    [16] Naik V,Voulgarakis A,Fiore A M,et al. Preindustrial to present day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project(ACCMIP)[J]. Atmospheric Chemistry&Physics,2013,13(10):5277-5298.
    [17] Khalil M A K and Rasmussen R A. Sources,sinks,and seasonal cycles of atmospheric methane[J]. Journal of Geophysical Research Atmospheres,1983. 88(9):5131-5144.
    [18] M9ller L. Independent variations of CH4emissions and isotopic composition over the past 160,000 years[J]. Nature Geoscience,2013,6(10):885-890.
    [19] Kirschke S,Bousquet P,Ciais P,et al. Three decades of global methane sources and sinks[J]. Nature Geoscience,2013,6(10):813-823.
    [20] Mattey D P,Fisher R,Atkinson T C,et al. Methane in underground air in Gibraltar karst[J]. Earth and Planetary Science Letters,2013,374:71-80.
    [21]鲁易,张稳,李婷婷,等.大气甲烷浓度变化的源汇因素模拟研究进展[J].地球科学进展,2015(7):763-772.
    [22]袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997(1):17-25.
    [23]曹建华,蒋忠诚,袁道先,等.岩溶动力系统与全球变化研究进展[J].中国地质,2017(5):874-900.
    [24] Liu Z and Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2sink[J]. Environmental Geology,2000,39(9):1053-1058.
    [25]刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(2-3):95-102.
    [26]王世杰,刘再华,倪健,等.中国南方喀斯特地区碳循环研究进展[J].地球与环境,2017,45(1):2-9.
    [27] Liu Z and Dreybrodt W. Significance of the carbon sink produced by H2O–carbonate–CO2–aquatic phototroph interaction on land[J]. Science Bulletin,2015,60(2):182-191.
    [28] Zhang C,Wang J,Junbing P U,et al. Bicarbonate daily variations in a karst river:The carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica(English Edition),2012,86(4):973-979.
    [29] Were A,Serrano-Ortiz P,Jong C M,et al. Ventilation of subterranean CO2and Eddy covariance incongruities over carbonate ecosystems[J]. Biogeosciences,2010,7(3):859-867.
    [30] Cuezva S,Fernandez-Cortes A,Benavente D,et al. Short-term CO2(g)exchange between a shallow karstic cavity and the external atmosphere during summer:Role of the surface soil layer[J]. Atmospheric Environment,2011,45(7):1418-1427.
    [31] Kowalski A S,Serrano-Ortiz P,Janssens I A,et al. Can flux tower research neglect geochemical CO2exchange?[J]. Agricultural and Forest Meteorology,2008,148(6-7):1045-1054.
    [32] Faimon J,Troppova D,Baldik V,et al. Air circulation and its impact on microclimatic variables in the Cisarska Cave(Moravian Karst,Czech Republic)[J]. International Journal of Climatology,2012,32(4):599-623.
    [33] Milanolo S and Gabrovsek F. Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave,Bosnia and Herzegovina[J].Boundary-Layer Meteorology,2009,131(3):479-493.
    [34] Linan C,Vadillo I,Carrasco F. Carbon dioxide concentration in air within the Nerja Cave(Malaga,Andalusia,Spain)[J]. International Journal of Speleology,2008,37(2):99-106.
    [35] Chen B,Yang R,Liu Z H,et al. Coupled control of land uses and aquatic biological processes on the diurnal hydrochemical variations in the five ponds at the Shawan Karst Test Site,China:Implications for the carbonate weathering-related carbon sink[J]. Chemical Geology,2017,456:58-71.
    [36] Zeng Q R,Liu Z H,Chen B,et al. Carbonate weathering-related carbon sink fluxes under different land uses:A case study from the Shawan Simulation Test Site,Puding,Southwest China[J]. Chemical Geology,2017,474:58-71.
    [37]罗维均,王世杰,刘秀明,等.喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J].地球科学进展,2014,29(12):1333-1340.
    [38] Sanchez-Ca1ete E P,Serrano-Ortiz P,Kowalski A S,et al. Subterranean CO2ventilation and its role in the net ecosystem carbon balance of a karstic shrubland[J]. Geophysical Research Letter,2011,38(9):L09802.
    [39] Baldini J U L,Mcdermott F,Hoffmann D L,et al. Very high-frequency and seasonal cave atmosphere PCO2variability:Implications for stalagmite growth and oxygen isotope-based paleoclimate records[J]. Earth&Planetary Science Letters,2008,272(1-2):118-129.
    [40] Serrano-Ortiz P,Roland M,Sanchez-Moral S,et al. Corrigendum to“Hidden,abiotic CO2flows and gaseous reservoirs in the terrestrial carbon cycle:Review and perspectives”[J]. Agricultural and Forest Meteorology,2011,151(4):529-529.
    [41] Serrano-Ortiz P,Roland M,Sanchez-Moral S,et al. Hidden,abiotic CO2flows and gaseous reservoirs in the terrestrial carbon cycle:Review and perspectives[J]. Agricultural and Forest Meteorology,2010,150(3):321-329.
    [42] Peyraube N,Lastennet R,Denis A,et al. Estimation of epikarst air PCO2using measurements of waterδ13CTDIC,cave air PCO2andδ13CCO2[J].Geochimica Et Cosmochimica Acta,2013,118(2):1-17.
    [43] Breecker D O,Payne A E,Quade J,et al. The sources and sinks of CO2in caves under mixed woodland and grassland vegetation[J]. Geochimica et Cosmochimica Acta,2012,96:230-246.
    [44] Kowalczk A J and Froelich P N. Cave air ventilation and CO2outgassing by radon-222 modeling:How fast do caves breathe?[J]. Earth and Planetary Science Letters,2010,289(1-2):209-219.
    [45] Sarbu S M,Kane T C,Kinkle B K. A chemoautotrophically based cave ecosystem[J]. Science,1996,272(5270):1953-1955.
    [46] Hutchens E,Radajewski S,Dumont M G,et al. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing[J]. Environmental Microbiology,2004,6(2):111-120.
    [47] Darling W G and Gooddy D C. The hydrogeochemistry of methane:Evidence from English groundwaters[J]. Chemical Geology,2006,229(4):293-312.
    [48] Waring C L,Griffith D W T,Wilson S,et al. Cave atmosphere:A guide to calcification and a methane sink[C]. Geochmica Et Cosmochimica Acta,2009,73(13):A1419.
    [49] Garciaanton E,Cuezva S,Fernandezcortes A,et al. Daily variations of CO2,δ13CO2and CH4of cave air controlled by external weather conditions:Example of rapid survey in Altamira cave(north of Spain)[C]. Egu General Assembly,2012,14:4859.
    [50] Fernandezcortes A,Cuezva S,Alvarezgallego M,et al. Subterranean atmospheres may act as daily methane sinks[J]. Nature Communications,2015,6(7003):1-11.
    [51] Lowry D,Holmes C W,Rata N D,et al. London methane emissions:Use of diurnal changes in concentration andδ13C to identify urban sources and verify inventories[J]. Journal of Geophysical Research Atmospheres,2001,106(7):872-885.
    [52] Mcdonough L K,Iverach C P,Beckmann S,et al. Spatial variability of cave-air carbon dioxide and methane concentrations and isotopic compositions in a semi-arid karst environment[J]. Environmental Earth Sciences,2016,75(8):700.
    [53] Menon S,Denman K L,Brasseur G,et al. Couplings between changes in the climate system and biogeochemistry[M]. Lawrn Brly Naonal Laboraory,2007:499-587.
    [54] Tyler S C,Crill P M,Brailsford G W. C13/C12 Fractionation of methane during oxidation in a temperate forest[J]. Geochimica Et Cosmochimica Acta,1994,8(6):1625-1633.
    [55] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology,1999,161(1-3):291-314.
    [56] Due1as C,Fernández M C,Ca1ete S,et al.222Rn concentrations,natural flow rate and the radiation exposure levels in the Nerja Cave[J]. Atmospheric Environment,1999,33(3):501-510.
    [57] Lario J,anchez-Moral S,Cuezva S,et al. High222Rn levels in a show cave(Casta1ar de Ibor,Spain):Proposal and application of management measures to minimize the effects on guides and visitors[J]. Atmospheric Environment,2006,40(38):7395-7400.
    [58] Lennon J T,Nguyen-Thùy D,Pha·m T M,et al. Microbial contributions to subterranean methane sinks[J]. Geobiology,2016,14(2):1-5.
    [59] Ding H,Hopke P K. HOx production due to radon decay in air[J]. Journal of Atmospheric Chemistry,1993,17(4):375-390.
    [60] Baker A,Barnes W L,Smart P L. Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave,Bristol[J].Hydrological Processes,1997,11(11):1541-1555.
    [61] Suwanwaree P and Robertson G P. Methane oxidation in forest,successional,and no-till agricultural ecosystems[J]. Soil Science Society of America Journal,2005,69(6):1722-1729.
    [62] VonFischer J C,Butters G,Duchateau P C,et al. In situ measures of methanotroph activity in upland soils:A reaction‐diffusion model and field observation of water stress[J]. Journal of Geophysical Research Biogeosciences,2009,114(1):588-591.
    [63] Webster K D,Mirza A,Deli J M,et al. Consumption of atmospheric methane in a limestone cave in Indiana,USA[J]. Chemical Geology,2016:1-9.
    [64] Brankovits D,Pohlman J W,Niemann H,et al. Methane-and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem[J]. Nature Communications,2017,8(1):1835.
    [65] Nguyê~n-Thu y`D,Schimmelmann A,Nguyê~n-Vǎn H,et al. Subterranean microbial oxidation of atmospheric methane in cavernous tropical karst[J]. Chemical Geology,2017,466:229-238.
    [66] Waring C L,Hankin S I,Griffith D W T,et al. Seasonal total methane depletion in limestone caves[J]. Scientific Reports,2017,7(1):1-12.
    [67] Karwautz C,Kus G,St9ckl M,et al. Microbial megacities fueled by methane oxidation in a mineral spring cave[J]. Isme Journal,2018,12(1):87-100.
    [68] Webster K D,Drobniak A,Etiope G,et al. Subterranean karst environments as a global sink for atmospheric methane[J]. Earth&Planetary Science Letters,2018,485:9-18.
    [69] Jones D S and Macalady J L. The Snotty and the Stringy:Energy for Subsurface Life in Caves[M]. Hurst C J,Their World:A Diversity of Microbial Environments,Advances in Environmental Microbiology 1.2016.
    [70] Hoehler T M and Jrgensen B B. Microbial life under extreme energy limitation[J]. Nature Reviews Microbiology,2013,11(2):3-94.
    [71] Bull I D,Parekh N R,Hall G H,et al. Detection and classification of atmospheric methane oxidizing bacteria in soil[J]. Nature,2000,405(6783):175-178.
    [72] Bachelet D and Neue H U. Sources and Sinks of Methane[M]. Atmospheric Methane:Sources,Sinks,and Role in Global Change,Khalil M A K.1993,Springer Berlin Heidelberg:Berlin,Heidelberg:457-468.
    [73] Waring C L,Hankin S I,Griffith D W T,et al. Author Correction:Seasonal total methane depletion in limestone caves[J]. 2018,8:1.
    [74] Fernandezcortes A,Sanchezmoral S,Cuezva S,et al. Annual and transient signatures of gas exchange and transport in the Casta ar de Ibor cave(Spain)[J]. International Journal of Speleology,2009,38(2):763-770.
    [75] Baldini J U L,Baldini L M,Mcdermott F,et al. Carbon dioxide sources,sinks,and spatial variability in shallow temperate zone caves:Evidence from Ballynamintra Cave,Ireland[J]. Journal of Cave&Karst Studies,2011,68(1):4-11.
    [76] Lecoq N,Magne L,Rodet J,et al. Evidence of daily and seasonal inversions of airflow in Petites Dales cave,Normandy,France[J]. Acta Carsologica,2017,46(2-3):179-197.
    [77] Sánchez-Can~ete E,Serrano-Ortiz P,Domingo F,et al. Cave ventilation is influenced by variations in the CO2-dependent virtual temperature[J].International Journal of Speleology,2013,42(1):1-8.
    [78] Atkinson T C,Smart P L,Wigley T M L. Climate and natural radon levels in Castleguard Cave,Columbia Icefields,Alberta,Canada[J]. Arctic&Alpine Research,1983,15(4):487-502.
    [79]房彬,李心清,张立科,等.西南喀斯特地区灌丛林土壤CO2、CH4通量研究[J].地球化学,2013,42(3):221-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700