用户名: 密码: 验证码:
基于PFC~(3D)的综放工作面裂隙场演化规律数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation Study on Fissure Field Evolution Laws of Fully Mechanized Caving Face Based on PFC~(3D)
  • 作者:江成浩 ; 刘浩 ; 周晓华 ; 樊程
  • 英文作者:JIANG Chenghao;LIU Hao;ZHOU Xiaohua;FAN Cheng;College of Mining and Safety Engineering, Shandong University of Science and Technology;
  • 关键词:深部冲击地压煤层 ; 采空区 ; 裂隙发育 ; 孔隙率分布 ; PFC3D ; 煤柱
  • 英文关键词:deep rock burst coal seam;;goaf;;fissure development;;porosity distribution;;PFC3D;;coal pillar
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:山东科技大学矿业与安全工程学院;
  • 出版日期:2019-01-20
  • 出版单位:煤矿安全
  • 年:2019
  • 期:v.50;No.535
  • 基金:国家自然科学基金资助项目(51674158)
  • 语种:中文;
  • 页:MKAQ201901051
  • 页数:5
  • CN:01
  • ISSN:21-1232/TD
  • 分类号:213-217
摘要
为了研究深部强冲击地压煤层综放工作面裂隙场演化规律。以滕东煤矿3下煤层地质情况为例,通过经验公式法确立得到了煤层细观参数,并运用PFC3D软件建立了煤层颗粒流模型,实现了对综放采空区孔隙率变化规律与煤柱裂隙发育情况的模拟研究。结果表明:工作面的回采作业影响了煤层、岩层中孔隙率的变化,当工作面推进至15 m时,煤层、岩层的局部孔隙率出现增大,而当回采距离达到90 m时,工作面前方煤层孔隙率依然可达0.98,上覆岩层裂隙不断发育;在两工作面回采期间,煤柱裂隙以不同的速度增长,并最终达到最大值。
        In order to explore the evolution laws of fissure field in fully mechanized top coal caving face in deep strata with strong rock burst. Taking the geological condition of 3 lower coal seam in Tengdong Coal Mine as an example, the meso parameters were established by empirical formula method, and the particle flow model of coal seam was established by PFC3 Dsoftware. The simulation studies on the change laws of porosity and the development of coal pillar fissures in fully mechanized top coal caving mining area were realized. The results show that the mining operation of the working face affects the change of porosity in the coal seam and the rock layer. When the working face is advanced to 15 m, the local porosity of the coal seam and rock formation increases. When the recovery distance reaches to 90 m, the porosity of coal seam in front of the working face is still up to 0.98,and the fractures of the overlying rock formation develop continuously. During the mining of the two working faces, the coal pillar fissures grow at different speeds and will eventually reach to a maximum value.
引文
[1]潘俊锋,宁宇,杜涛涛,等.区域大范围防范冲击地压的理论与体系[J].煤炭学报,2012,37(11):1803.
    [2]秦坤,彭小亚,李波.采空区导气裂隙带瓦斯渗流规律研究[J].煤矿安全,2015,46(9):13-15.
    [3]黄志安,张英华,李示波,等.FLAC在确定沙曲矿裂隙带上下界中的应用[J].矿业研究与开发,2006,26(1):20-21.
    [4]宋选民.潞安矿区构造裂隙分布特征的实测分析[J].矿山压力与顶板管理,2002(3):101-103.
    [5]武猛猛,王刚.基于颗粒流理论的上覆岩层裂隙演化规律研究[J].煤矿安全,2016,47(8):33-36.
    [6]张学博,程红军,靳晓敏.综采面采空区孔隙率分布规律数值研究[J].工业安全与环保,2015,41(9):28.
    [7]高会春,海龙,崔铁军.开采过程中上覆急倾斜岩层运移规律模拟与研究[J].煤炭学报,2015,40(10):2380.
    [8] Cundall P A, Strack O D L.A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.
    [9]赵国彦,戴兵,马驰.平行黏结模型中细观参数对宏观特性影响研究[J].岩石力学与工程学报,2012,31(7):1491-1498.
    [10]武猛猛,王刚,王锐,等.浅埋采场上覆岩层孔隙率的时空分布特征[J].煤炭学报,2017,42(S1):112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700