用户名: 密码: 验证码:
基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Parameters adaptive adjustment strategy of quantum communication channel in free-space based on software-defined quantum communication
  • 作者:卫容宇 ; 聂敏 ; 杨光 ; 张美玲 ; 孙爱晶 ; 裴昌幸
  • 英文作者:Wei Rong-Yu;Nie Min;Yang Guang;Zhang Mei-Ling;Sun Ai-Jing;Pei Chang-Xing;School of Communication and Information Engineering, Xi'an University of Post and Telecommunications;School of Electronics and Information, Northwestern Polytechnical University;State Key Laboratory of Integrated Service Networks, Xidian University;
  • 关键词:自由空间量子通信 ; 软件定义量子通信 ; 量子态 ; 保真度
  • 英文关键词:free space quantum communication;;software defined quantum communication;;quantum state;;fidelity
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西安邮电大学通信与信息工程学院;西北工业大学电子信息工程学院;西安电子科技大学综合业务网国家重点实验室;
  • 出版日期:2019-07-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61172071);; 陕西省国际科技合作与交流计划项目(批准号:2015KW-013);; 陕西省教育厅科研计划项目(批准号:16JK1711)资助的课题~~
  • 语种:中文;
  • 页:WLXB201914024
  • 页数:9
  • CN:14
  • ISSN:11-1958/O4
  • 分类号:302-310
摘要
自由空间量子通信会受到雾霾、沙尘、降雨等自然环境的干扰.为提升环境干扰下量子通信的性能,本文提出了基于软件定义量子通信(software defined quantum communication, SDQC)的自由空间量子通信信道参数自适应调整策略.该策略通过对环境状态实时监测,根据预置在应用层的程序,对量子初始状态及单量子态存在时间等相关参数进行自适应调整,提高自然环境背景干扰下自由空间量子通信系统的保真度.仿真结果表明,在退极化、自发幅度衰变及相位阻尼三种噪声信道参数取值不同时, SDQC系统参数的最佳取值也不同.系统根据环境变化及业务需求,自适应地选择量子初始状态及单量子态存在时间,使量子保真度在通信过程中始终保持在峰值,有效提升了量子通信系统的适应能力及综合免疫力.
        Quantum communication in free space will be disturbed by natural environment, such as fog, dust, and rain, which is a difficult problem in the construction of quantum communication system. In order to solve this problem and improve the survivability of quantum communication system, we propose an adaptive parameter adjustment strategy for free-space quantum communication based on software-defined quantum communication(SDQC). Firstly, we propose a software-defined quantum communication model based on the idea of software defined networks. The architecture of SDQC is divided into four layers: transport layer, access layer, control layer, and management layer. The SDQC system sends the link information to the preset program at a management level through the real-time monitoring of channel state by the access layer. According to the link information, the management level issues instructions to the control layer to adjust the parameters such as the initial quantum state and the existence time of single quantum state, in order to improve the quantum entanglement and fidelity. Secondly, we analyze the relationship between quantum fidelity and parameters in SDQC system under three noise channels, i.e. depolarization channel, spontaneous amplitude decay channel,and phase damping channel. In the depolarized channel, the quantum fidelity F decreases with the increase of the error probability Pd of the qubit. When the error probability of qubit is certain, the system has the maximum quantum fidelity with the value of parameter x is 0.5. In the spontaneous amplitude decay channel,the quantum fidelity F decreases with the increase of the quantum state transition probability pt. When the transition probability of quantum state is certain, the higher the value of parameter x, the higher the fidelity will be. In the phase-damped channel, the quantum fidelity F decreases with the increase of the probability pc with which the qubit and the background interference equivalent quantum state have complete elastic scattering. When the probability is certain, the larger the value of |1/2 – x|, the higher the quantum fidelity of the system will be. Finally, we study the optimal values of SDQC system parameters under different environmental disturbances. The simulation results show that the optimal parameters of SDQC system are different when the parameters of three noise channels, namely depolarization, spontaneous amplitude decay and phase damping, are different. The system adaptively selects the initial quantum state and the existence time of single quantum state according to the environmental change and business demand, so that the quantum fidelity is always at the peak in the communication process. This strategy effectively improves the adaptability and comprehensive immunity of the quantum communication system.
引文
[1]Jin X M,Ren J G,Yang B 2010 Nat. Photon.4 376
    [2]Ma X S,Thomas H,Thomas S,Wang D Q,Sebastian K,William N,Bernhard W,Alexandra M,Johannes K,Elena A,Vadim M,Thomas J,Rupert U,Anton Z 2012 Nature 489269
    [3]Davide E B,Timothy C,Ralph,Ivette F,Thomas J,Mobsen R 2014 Phys.Rev.D 90 045041
    [4]Nie M,Ren J,Yang G,Zhang M L,Pei C X 2015 Acta Phys.Sin.64 150301(in Chinese)[聂敏,任杰,杨光,张美玲,裴昌幸2015物理学报64 150301]
    [5]Nie M,Shang P G,Zhang M L,Pei C X 2014 Acta Phys.Sin.63 240303(in Chinese)[聂敏,尚鹏钢,杨光,张美玲,裴昌幸2014物理学报63 240303]
    [6]Nie M,Shi L,Yang G,Pei C X 2017 J.Commun.38 2017092(in Chinese)[聂敏,石力,杨光,裴昌幸2017通信学报382017092]
    [7]Ivan C,Andrea T,Alberto D,Francesca G,Ruper U,Giuseppe V,Paolo V 2012 Phys.Rev.Lett.109 200502
    [8]Nie M,Ren J M,Yang G,Zhang M L,Pei C X 2016 Acta Photon.Sin.45 0927004(in Chinese)[聂敏,任家明,杨光,张美玲,裴昌幸2016光子学报45 0927004]
    [9]Nie M,Tang S R,Yang G,Zhang M L,Pei C X 2017 Acta Phys.Sin.66 070302(in Chinese)[聂敏,唐守荣,杨光,张美玲,裴昌幸2017物理学报66 070302]
    [10]Nie M,Chang L,Yang G,Zhang M L,Pei C X 2017 Acta Photon.Sin.46 0701002(in Chinese)[聂敏,常乐,杨光,张美玲,裴昌幸2017光子学报46 0701002]
    [11]Nie M,Tang S R,Yang G,Zhang M L,Pei C X 2017 Acta Photon.Sin.46 1206002(in Chinese)[聂敏,唐守荣,杨光,张美玲,裴昌幸2017光子学报46 1206002]
    [12]Nie M,Ren J M,Yang G,Zhang M L,Pei C X 2016 ActaPhys.Sin.65 190301(in Chinese)[聂敏,任家明,杨光,张美玲,裴昌幸2016物理学报65 190301]
    [13]Zhang C K,Cui Y,Tang H Y,Wu J P 2015 J.Software 2662(in Chinese)[张朝昆,崔勇,唐翯祎,吴建平2015软件学报26 62]
    [14]Mijumbi R,Serrat J,Gorricho J,Bouten N,de Truck F,Boutaba R 2016 IEEE Commun.Surv.Tut. 18 239
    [15]Suresh L,Schulz J,Merz R,Feldmann A 2012 Co'mput.Commun.Rev.42 279
    [16]Kannan K,Banerjee S 2012 Proceedings of the 8th International Conference on Network and Service Managem.ent Las Vegas,USA,October 22-26,2012 p295
    [17]Jin D,Nicol D M 2013 Proceedings of the 2013 ACM SIGSIM Conference On Principles of Advanced Discrete Simulation Montreal,Canada,May 19-22,2013 p91
    [18]Yin H,Ma H X 2006 Introduction to Quantum Communication in Military(Beijing:Military Science Press)p224(in Chinese)[尹浩,马怀新2006军使量子通信概论(北京:军事科学出版社)第224页]
    [19]Zhang D Y 2013 Quantum Logic Gates and Quantum Decoherence(Beijing:Science Press)pp90-110(in Chinese)[张登玉2013量子逻辑门与量子退相干(北京:科学出版社)第9 0-110页]
    [20]Liao X P,Fang M F,Fang J S,Zhu Q Q 2014 Chin.Phys.B23 020304
    [21]Yin H,Ma H X 2006 Introduction to Quantum Communication in Military(Beijing:Military Science Press)p227(in Chinese)[尹浩,马怀新2006军使量子通信概论(北京:军事科学出版社)第227页]
    [22]Bennett C H 1992 Phys.Rev.Lett.68 3121
    [23]Gao F,Qin S J,Huang W,Wen Q Y 2019 Sci.China:Phys.Mech.Astron.62 070301
    [24]Gao F,Liu B,Wen Q Y 2012 Opt.Express 20 17411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700