用户名: 密码: 验证码:
不同偏移角度荷载下膝关节假体接触压力的有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contact pressure of knee prosthesis under different loads with deviation angles by finite element analysis
  • 作者:相昌鑫 ; 纪斌平 ; 陈维毅 ; 王长江 ; 郭媛
  • 英文作者:Xiang Changxin;Ji Binping;Chen Weiyi;Wang Changjiang;Guo Yuan;College of Biomedical Engineering,Taiyuan University of Technology;Shanxi Huajin Orthopaedic Hospital;College of Engineering and Information, University of Sussex;
  • 关键词:人工膝关节 ; 有限元分析 ; 步态载荷 ; 接触压力 ; 接触面积 ; 生物力学 ; 国家自然科学基金
  • 英文关键词:artificial knee joint;;finite element analysis;;gait circle;;contact pressure;;contact area;;biomechanics;;National Natural Science Foundation of China
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:太原理工大学生物医学工程学院;山西华晋骨科医院;Sussex大学工程与信息学院;
  • 出版日期:2019-07-18
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.885
  • 基金:国家自然科学基金(11472185),项目负责人:郭媛;国家自然科学基金(11772214),项目负责人:王长江~~
  • 语种:中文;
  • 页:XDKF201928019
  • 页数:7
  • CN:28
  • ISSN:21-1581/R
  • 分类号:100-106
摘要
背景:人工膝关节置换后因为假体的失效部分患者的满意程度不高。造成膝关节假体早期失效的原因有高分子聚乙烯垫衬的早期磨损、假体松动与假体失稳,且均与假体的接触压力有关。目的:分析在步态过程中,载荷偏移角度对胫骨垫衬上接触压力、面积和压力分布的影响。方法:将膝关节假体的模型导入到Abaqus三维有限元软件中,将步态过程中的轴向载荷偏移0°,1°,2°,3°,4°,5°和6°形成7种不同工况,研究不同工况下胫骨垫衬上的接触压力、面积与接触压力分布的变化。结果与结论:(1)在步态过程中,高分子聚乙烯垫衬上的接触压力随载荷偏移角度的增加而增加;(2)随轴向载荷向外侧偏移,胫骨垫衬与内侧髁的接触面积减少,与外侧髁的接触面积增大;(3)通过接触压力分布云图发现,接触位置逐渐向胫骨垫衬边缘移动,在胫骨垫衬与外侧髁接触位置产生了应力集中现象;(4)结果表明,下肢对线不齐造成的载荷偏移会引起高分子聚乙烯垫衬上的接触压力明显增大,改变原本的接触面积和接触位置,易发生应力集中现象。如果膝关节假体长期处于上述不良的力学环境之中,会造成膝关节假体的失效。
        BACKGROUND: After artificial knee joint replacement, some patients have low postoperative satisfaction because of the failure of the prosthesis. The early failure of the knee prosthesis is caused by the early wear of the polyethylene component, the loosening and the instability of the prosthesis, which are affected by the contact pressure of the prosthesis.OBJECTIVE: To study the effect of load offset angle on contact pressure, contact area and contact pressure distribution on the polyethylene insert during gait circle.METHODS: The model of the knee prosthesis was introduced into the Abaqus three-dimensional finite element software. The axial force of gait load was offset by 0°, 1°, 2°, 3°, 4°, 5° and 6° to form seven working conditions. The contact pressure,contact area and contact pressure distribution of the polyethylene insert were studied under different working conditions.RESULTS AND CONCLUSION:(1) The contact pressure of the polyethylene insert increases with the augment of the axial load deviation angle during the gait circle.(2) As the axial load shifting to the outside, the contact area between the polyethylene insert and the medial condyle decreases, and the contact area with the lateral condyle increases.(3) Through the contact pressure distribution cloud map, it is found that the contact position gradually moves toward the edge of the tibial tray, and stress concentration occurs at the contact position between the tibial tray and the lateral condyle.(4) The load deviation caused by the poor malalignment will cause the contac t pressure on the polyethylene component to increase significantly, and will change the original contact area and contact position. If the knee prosthesis is in the above-mentioned poor mechanical environment for a long time, it will lead to the failure of the knee prost hesis.
引文
[1]Goudie EB,Robinson C,Walmsley P,et al.Changing trends in total knee replacement.Eur J Orthop Surg Traumatol.2017;27(4):539-544.
    [2]Nam D,Mcarthur BA,Cross MB,et al.Patient-specific instrumentation in total knee arthroplasty:a review.J Knee Surg.2012;25(3):213-220.
    [3]Noble PC,Conditt MA,Cook KF,et al.The John Insall Award:Patient expectations affect satisfaction with total knee arthroplasty.Clin Orthop Relat Res.2006;452(452):35-43.
    [4]Massin P.How does total knee replacement technique influence polyethylene wear.Orthop Traumatol Surg Res.2017;103(1):S21.
    [5]Werner FW,Ayers DC,Maletsky LP,et al.The effect of valgus/varus malalignment on load distribution in total knee replacements.JBiomech.2005;38(2):349-355.
    [6]Martinelli N,Baretta S,Pagano J,et al.Contact stresses,pressure and area in a fixed-bearing total ankle replacement:a finite element analysis.BMC Musculoskeletal Disorders.2017;18(3):2473011417S0002.
    [7]Cerquiglini A,Henckel J,Hothi HS,et al.Computed tomography techniques help understand wear patterns in retrieved total knee arthroplasty.J Arthroplasty.2018;33(9):3030-3037.
    [8]Villa TMF,Gastaldi D,Colombo M,et al.Contact stresses and fatigue life in a knee prosthesis:comparison between in vitro measurements and computational simulations.J Biomech.2004;37(1):45-53.
    [9]Goswami T.Knee implants-Review of models and biomechanics.Mater Des.2009;30(2):398-413.
    [10]Bartel DL,Rawlinson JJ,Burstein AH,et al.Stresses in polyethylene components of contemporary total knee replacements.Clin Orthop Relat Res.1995;317(317):76-82.
    [11]Collier JP,Mayor MB,Mcnamara JL,et al.Analysis of the Failure of122 Polyethylene Inserts From Uncemented Tibial Knee Components.Clin Orthop Relat Res.1991;273(273):232-242.
    [12]Stukenborgcolsman C,Ostermeier S,Hurschler C,et al.Tibiofemoral contact stress after total knee arthroplasty:comparison of fixed and mobile-bearing inlay designs.Acta Orthopaedica Scandinavica.2002;73(6):638-646.
    [13]Sathasivam S,Walker PS.Computer model to predict subsurface damage in tibial inserts of total knees.J Orthop Res.2010;16(5):564.
    [14]莫富灏,杜敏,刘傥,等.肿瘤型膝关节置换后股骨-假体-胫骨复合体生物力学响应[J].医用生物力学,2016,31(3):235-239.
    [15]Woiczinski M,Steinbrück A,Weber P,et al.Development and validation of a weight-bearing finite element model for total knee replacement.Comput Methods Biomech Biomed Engin.2016;19(10):1033-1045.
    [16]Nakamura S,Tian Y,Tanaka Y,et al.The effects of kinematically aligned total knee arthroplasty on stress at the medial tibia.Bone Joint Res.2017;6(1):43-51.
    [17]Young SW,Koh CK,Ravi S,et al.Total knee arthroplasty in the 21st century:why do they fail?a fifteen-year analysis of 11,135 knees.Orthop J Sports Med.2017;5(5 suppl5):2325967117S0020.
    [18]Barbour PS,Barton DC,Fisher J.The influence of stress conditions on the wear of UHMWPE for total joint replacements.J Mater Sci Mater Med.1997;8(10):603.
    [19]郭媛,张绪树,安美文,等.日常运动时内翻人工膝关节接触压力的有限元分析[J].太原理工大学学报,2014,45(3):358-362.
    [20]Shi JF.Finite element analysis of total knee replacement considering gait cycle load and malalignment.Quaternary Sci.2007;27(5):870-879.
    [21]Li X,Wang C,Guo Y,et al.An approach to developing customized total knee replacement implants.J Health Eng.2017;2017(8):1-8.
    [22]Munzinger UK,Wyss U,Boldt JG,et al.Basic Science,Design,and Materials[M]//Primary Knee Arthroplasty.Springer Berlin Heidelberg,2004.
    [23]Teo A,Mishra A,Park I,et al.Polymeric Biomaterials for Medical Implants&Devices.Acs Biomat Sci Eng.2016;2(4):454-472.
    [24]张绪树,郭媛,安美文,等.不同运动状态下国产人工膝关节接触压力分布有限元分析[J].计算机辅助工程,2013,22(2):61-65.
    [25]Halloran JP,Petrella AJ,Rullkoetter PJ.Explicit finite element modeling of total knee replacement mechanics.J Biomech.2005;38(2):323-331.
    [26]李新宇,王长江,陈维毅.一种新型膝关节假体在步态过程中接触应力的有限元仿真[J].医用生物力学,2017,32(6):494-499.
    [27]崔晓倩,王辅忠,张慧春.膝关节股骨远端软骨硬化前后力学性能分析[J].医用生物力学,2015,30(1):25-29.
    [28]Crowninshield R,Pope MH,Johnson RJ.An analytical model of the knee.J Biomech.1976;9(6):397-405.
    [29]王俊然,杜玮瑾,王长江,等.有限元分析不同屈曲状态下胫-股关节的生物力学变化[J].中国组织工程研究,2018,22(31):4975-4981.
    [30]Taylor M,Barrett DS.Explicit finite element simulation of eccentric loading in total knee replacement.Clin Orthop Relat Res.2003;414(414):162-171.
    [31]ISO,ISO 14243-3:2014,Implants for Surgery-Wear of Total Knee-Joint Prostheses,Loading and Displacement Parameters for Wear-Testing Machines with Displacement Control and Corresponding Environmental Conditions for Test,International Organization Environmental Standardization,London,UK,2014.
    [32]Lafortune MA,Cavanagh PR,Iii HJS,et al.Three-dimensional kinematics of the human knee during walking.J Biomech.1992;25(4):347-357.
    [33]Gruionu LG,Gruionu G,Pastrama S,et al.Contact studies between total knee replacement components developed using explicit finite elements analysis.[C]//International Conference on Medical Image Computing&Computer-assisted Intervention.2009.
    [34]赵奇,蒋垚.人工膝关节假体设计新进展[J].中国组织工程研究,2010,14(52):9838-9840.
    [35]邓海宁,曹轲飞,蒋仕雄.全膝关节置换术假体的三维有限元生物力学分析[J].基因组学与应用生物学,2017,36(12):4992-4999.
    [36]Nguyen LCL,Lehil MS,Bozic KJ.Trends in total knee arthroplasty implant utilization.J Arthroplasty.2015;30(5):739-742.
    [37]Nakamura S,Tian Y,Tanaka Y,et al.The effects of kinematically aligned total knee arthroplasty on stress at the medial tibia:A case study for varus knee.Bone Joint Res.2017;6(1):43-51.
    [38]Vince KG.Why knees fail.J Arthroplasty.2003;18(1):39-44.
    [39]Brockett C,Carbone S,Fisher J,et al.Influence of conformity on the wear of total knee replacement:An experimental study.Proc Inst Mech Eng H.2018;232(2):127-134.
    [40]D'Lima DD,Chen PC,Jr CC.Polyethylene contact stresses,articular congruity,and knee alignment.Clin Orthop Relat Res.2001;392(392):232-238.
    [41]Rivière C,Iranpour F,Auvinet E,et al.Alignment options for total knee arthroplasty:A systematic review.Orthop Traumatol Surg Res.2017;103(7):1047.
    [42]Affatato S,Valigi MC,Logozzo S.Wear distribution detection of knee joint prostheses by means of 3d optical scanners.Materials.2017;10(4):36.
    [43]Tarni??D,Calafeteanu DM,Geonea ID,et al.Effects of malalignment angle on the contact stress of knee prosthesis components,using finite element method.Rom J Morphol Embryol.2017;58(3):831-836.
    [44]Brockett CL,Abdelgaied A,Haythornthwaite T,et al.The influence of simulator input conditions on the wear of total knee replacements:An experimental and computational study.Proc Inst Mech Eng H.2016;230(5):429-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700