用户名: 密码: 验证码:
茶树光敏色素基因家族成员的生物信息学及其表达量与黄酮含量的相关性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioinformatics of phytochrome gene family members of tea,its expression and correlation with flavonoid content
  • 作者:莫晓丽 ; 周子维 ; 把熠晨 ; 武清扬 ; 赖钟雄 ; 孙云
  • 英文作者:MO Xiao-li;ZHOU Zi-wei;BA Yi-chen;WU Qing-yang;LAI Zhong-xiong;SUN Yun;College of Horticulture,Fujian Agriculture and Forestry University/Key Laboratory of Tea Science of Fujian Universities;Institute of Horticultural Biotechnology,Fujian Agriculture and Forestry University;
  • 关键词:茶鲜叶 ; 采摘时间 ; 光敏色素基因 ; qRT-PCR ; 黄酮
  • 英文关键词:fresh tea leaves;;plucking time;;phytochrome gene;;qRT-PCR;;flavonoid
  • 中文刊名:GXNY
  • 英文刊名:Journal of Southern Agriculture
  • 机构:福建农林大学园艺学院/茶学福建省高校重点实验室;福建农林大学园艺植物生物工程研究所;
  • 出版日期:2019-06-15
  • 出版单位:南方农业学报
  • 年:2019
  • 期:v.50;No.405
  • 基金:国家现代农业(茶叶)产业技术体系建设专项(CARS-19);; 福建农林大学科技创新基金项目(KFA17357A);福建农林大学科技创新专项(CXZX2018076)
  • 语种:中文;
  • 页:GXNY201906005
  • 页数:10
  • CN:06
  • ISSN:45-1381/S
  • 分类号:23-32
摘要
【目的】分析茶树光敏色素(PHY)基因(CsPHY)的生物学信息及不同采摘时间点茶叶中光敏色素基因表达量与黄酮含量的相关性,为茶叶适时采摘及品质调控提供理论参考。【方法】从茶树基因组数据库(CSA)中筛选出CsPHY基因家族成员,对其进行生物信息学分析,并通过邻接法(NJ)构建系统发育进化树。以一天中不同时间点0:00(R0)、6:00(R6)、12:00(R12)和18:00(R18)采摘的乌龙茶品种肉桂鲜叶为试材,通过实时荧光定量PCR(qRT-PCR)检测CsPHY基因家族成员在不同时间点的表达量,并采用三氯化铝比色法检测茶叶中黄酮含量的日变化,以皮尔逊(Pearson)相关系数评估CsPHY基因相对表达量与黄酮含量的相关性。【结果】共筛选获得6个CsPHY基因家族成员,编码蛋白的氨基酸数量674~1142个,分子量为76126.75~126714.53 Da,等电点(pI)为5.74~5.96,脂溶性系数为91.11~95.27,其中,CsPHY1基因属于PHYC亚族,CsPHY2和CsPHY4基因属于PHYA亚族,CsPHY3和CsPHY5基因属于PHYB亚族,CsPHY6基因属于PHYE亚族,说明CsPHY2和CsPHY4蛋白属于Phy I型光敏色素,CsPHY1、CsPHY3、CsPHY5和CsPHY6蛋白属于Phy II型光敏色素。6个CsPHY蛋白均与双子叶植物PHY蛋白的亲缘关系较近,其中,CsPHY2蛋白与水晶兰PHYA亚族蛋白的亲缘关系较近,CsPHY4蛋白与美味猕猴桃PHYA亚族蛋白的亲缘关系较近;CsPHY3和CsPHY5蛋白均与美味猕猴桃PHYB亚族蛋白的亲缘关系较近,且CsPHY5蛋白与葡萄PHYB亚族蛋白的亲缘关系相近;CsPHY1蛋白与河岸葡萄PHYC亚族蛋白的亲缘关系较近,CsPHY6蛋白与中华猕猴桃和河岸葡萄PHYE亚族蛋白的亲缘关系较近。CsPHY1、CsPHY3、CsPHY4和CsPHY5基因在R6时的表达量最高,其中,CsPHY4和CsPHY5基因在R6时的表达量显著高于其他时间点的表达量(P<0.05,下同),而CsPHY2和CsPHY6基因分别在R12和R18时的表达量达最高,其中CsPHY6基因在R18时的表达量显著高于R12时的表达量。在R0~R18时段内茶树鲜叶中的黄酮含量无显著变化(P>0.05),整体呈先下降后上升趋势,在R18时达最高值,在R12时最低值。6个CsPHY基因家族成员中,仅CsPHY6基因与黄酮间呈极显著正相关(P<0.01)。【结论】CsPHY基因家族中仅缺少PHYD亚族成员,尽管各成员间功能结构较相似,但表达模式存在明显差异。光照影响茶树叶片中黄酮含量,CsPHY6基因编码的光受体蛋白CsPHY6参与调控茶树叶片中的黄酮含量。
        【Objective】By analyzing the bioinformatics of tea phytochrome(PHY)gene(CsPHY)and correlation between its expression and the content of flavonoids in tea plucked at different times,the objective of this study was to provide theoretical references for timely plucking and quality control of tea.【Method】Tea tree CsPHY gene family members were selected from Tea Tree Genome Database(CSA),their bioinformatics were analyzed and phylogenetic tree was constructed through Neighbor-Joining method(NJ). Oolong tea Rougui plucked at different times 0:00(R0),6:00(R6),12:00(R12),18:00(R18)in one day were used as materials,the expression patterns of PHY gene family members at different times were analyzed by real-time fluorescence quantitative(qRT-qPCR). The daily variation of flavonoids in tea was detected by AlCl3 colorimetry,the correlation between relative express levels of CsPHY genes and the content of flavonoids were evaluated by Pearson correlation coefficient.【Result】Six CsPHY gene family members were obtained. The amino acids number of coded protein was 674-1142,the molecular weight was 76126.75-126714.53 Da,the isoelectric point(pI)was 5.74-5.96,and the aliphatic index was 91.11-95.27. CsPHY1 gene belonged to PHYC subfamily,CsPHY2 and CsPHY4 genes belonged to PHYA subfamily,CsPHY3 and CsPHY5 genes belonged to PHYB subfamily,CsPHY6 gene belonged to PHYE subfamily,indicating that CsPHY2 and Cs PHY4 proteins belonged to Phy I type phytochrome,CsPHY1,CsPHY3,CsPHY5 and CsPHY6 proteins belonged to Phy II type phytochrome. The six tea tree CsPHY proteins were closely related to the PHY protein of dicotyledonous plants. Among them,the CsPHY2 protein was closely related to the PHYA subfamily protein of Monotropastrum globosum,and the CsPHY4 protein was closely related to the PHYA subfamily protein of Actinidia deliciosa. CsPHY3 and CsPHY5 proteins were closely related to the PHYB subfamily protein of the A. deliciosa,and CsPHY5 protein was closely related to the PHYB subfamily protein of Vitis vinifera. CsPHY1 protein was closely related to the PHYC subfamily of V. riparia. CsPHY6 protein was closely related to the PHYE subfamily proteins of A. chinensis and V. riparia. The expression levels of CsPHY1,CsPHY3,CsPHY4 and CsPHY5 genes were the highest at R6. The expression levels of CsPHY4 and CsPHY5 genes at R6 were significantly higher than those at other time points(P<0.05,the same below). The highest expression levels of CsPHY2 and CsPHY6 genes were at R12 and R18 respectively,and the expression level of CsPHY6 gene at R18 was significantly higher than that at R12. There was no significant change in the content of flavonoids in fresh tea leaves during the period of R0-R18(P>0.05). The trend of flavonoids content declined first and then upward,reaching the peak at R18 and the lowest at R12. Among the six CsPHY gene family members,only CsPHY6 gene was extremely positively correlated with flavonoids(P<0.01).【Conclusion】Only the PHYD subfamily member is missing from the tea tree CsPHY gene family. Although the functional structures are similar,there are great difference in expression patterns. Light affects the content of flavonoids in tea leaves,and CsPHY6 gene-encoded photoreceptor protein CsPHY6 is involved in the regulation of flavonoids content in tea leaves.
引文
陈碧薇.2014.光敏色素下游转录因子基因沉默对番茄生长和营养品质及丁香假单胞菌Pst DC3000胁迫抗性的影响[D].杭州:浙江大学.[Chen B W.2014.Effects of phytochrome downstream transcription factor gene silencing on the growth,nutritional quality and stress tolerance to Pst DC3000 in tomato[D].Hangzhou:Zhejiang University.]
    顾建伟,刘婧,薛彦久,臧新,谢先芝.2011.光敏色素在水稻生长发育中的作用[J].中国水稻科学,25(2):130-135.[Gu J W,Liu J,Xue Y J,Zang X,Xie X Z.2011.Phytochrome functions in rice development[J].Chinese Journal of Rice Science,25(2):130-135.]
    何静雯,李晨,邱甜,吴燕燕,沈梓力,吴月燕.2018a.弱光胁迫下鄞红葡萄生理生化特性及相关基因的研究[J].华北农学报,33(6):123-129.[He J W,Li C,Qiu T,Wu YY,Shen Z L,Wu Y Y.2018a.Effects of weak light stress on physiological and biochemical characteristics and relative gene expression of Yinhong grape[J].Acta Agriculturae Boreali-Sinica,33(6):123-129.]
    何静雯,赵晟,岳庆春,吴月燕.2018b.弱光胁迫下‘鄞红’葡萄光合特性及相关基因的表达[J].西南农业学报,31(12):2520-2526.[He J W,Zhao S,Yue Q C,Wu Y Y.2018b.Effects of weak light stress on photosynthetic characteristics and relative fene expression of‘Yinhong’grape[J].Southwest China Journal of Agricultural Sciences,31(12):2520-2526.]
    李建平,杨建平,宋梅芳,苏亮,侯佩,郝晓燕,邵琳,陈果,足木热木,黄全生.2014.拟南芥光敏色素D(AtphyD)在不同光质下的表达特性分析[J].新疆农业科学,51(2):305-310.[Li J P,Yang J P,Song M F,Su L,Hou P,Hao X Y,Shao L,Chen G,Zumuremu,Huang Q S.2014.Differential patterns of expression of the Arabidopsis phytochrome D under different light conditions[J].Xinjiang Agricultural Sciences,51(2):305-310.]
    李娜,张晓燕,田纪元,贾礼,龚春燕,居鑫,刘自力,崔瑾.2017.蓝光连续光照对大豆芽苗菜类黄酮合成的影响[J].大豆科学,36(1):51-59.[Li N,Zhao X Y,Tian JY,Jia L,Gong C Y,Ju X,Liu Z L,Cui J.2017.Effect of blue light continuous illumination on flavonoid synthesis in soybean sprouts[J].Soybean Science,36(1):51-59.]
    廉德君,许根俊.1997.蛋白质结构与功能中的结构域[J].生物化学与生物物理进展,24(6):482-486.[Lian D J,Xu G J.1997.Structure domains in protein structure and function[J].Progress in Biochemistry and Biophysics,24(6):482-486.]
    刘栓桃,张志刚,李巧云,王淑芬,赵智中,卢金东,张晓燕,徐文玲,刘贤娴,付卫民.2014.光敏色素B基因(PHYB)启动子突变及与大白菜开花时间的关联分析[J].农业生物技术学报,22(7):853-861.[Liu S T,Zhang Z G,Li QY,Wang S F,Zhao Z Z,Lu J D,Zhang X Y,Xu W L,Liu X X,Fu W M.2014.Association analysis between phytochrome B gene(PHYB)promoter mutantions and flowering time in Chinese cabbage(Brassica rapa L.ssp.pekinensis)[J].Journal of Agricultural Biotechnology,22(7):853-861.]
    刘转霞,余运康,陈裕坤,冯新,刘炜婳,张梓浩,程春振,林玉玲,赖钟雄.2017.福州野生蕉隐花色素和光敏色素基因家族的克隆及其表达分析[J].热带作物学报,38(11):2089-2099.[Liu Z X,Yu Y K,Chen Y K,Feng X,Liu W H,Zhang Z H,Cheng C Z,Lin Y L,Lai Z X.2017.Cloning and expression analysis of Cryptochrome and Phytochrome family genes in the wild banana(Musa spp.)from Fuzhou City[J].Chinese Journal of Tropical Crops,38(11):2089-2099.]
    罗丽,郭雅玲.2004.福建乌龙茶黄酮类化合物含量分析[J].中国茶叶加工,(3):32-34.[Lou L,Guo Y L.2004.Analysis of flavonoids in Fujian Oolong tea[J].China Tea Processing,(3):32-34.]
    马晓净.2018.玉米PHYB1基因在拟南芥中的功能分析[D].北京:中国农业科学院.[Ma X J.2018.Functional analyses of maize PHYB1 in Arabidopsis thaliana[D].Beijing:Chinese Aca-demy of Agricultural Sciences.]
    牛骧,郭林,杨宗举,孙蕾,李红丹,游光霞,徐宏,孟凡华,佘跃辉,杨建平.2017.2个玉米光敏色素C基因的转录丰度对多种光质处理的响应[J].中国农业科学,50(12):2209-2219.[Niu X,Guo L,Yang Z J,Sun L,Li H D,You G X,Xu H,Meng F H,She Y H,Yang J P.2017.Transcription abundances of two phytochrome C in response to different light treatment in Zea mays[J].Scientia Agricultura Sinica,50(12):2209-2219.]
    王静,王艇.2007.高等植物光敏色素的分子结构、生理功能和进化特征[J].植物学通报,24(5):649-658.[Wang J,Wang T.2007.Molecular structure,physiological function and evolution of phytochrome in higher plant[J].Chinese Bulletin of Botany,24(5):649-658.]
    王静.2009.裸子植物PHY基因GAF和PHY-PAS1结构域的适应性进化研究[D].武汉:中国科学院武汉植物园.[Wang J.2009.Adaptive evolution in the GAF and PHY-PAS1 domains of PHY gene in gymnosperms[D].Wuhan:Wuhan Botanical Garden,Chinese Academy of Sciences.]
    夏涛,高丽萍.2009.类黄酮及茶儿茶素生物合成途径及其调控研究进展[J].中国农业科学,42(8):2899-2908.[Xia T,Gao L P.2009.Advances in biosynthesis pathways and regulation of flavonoids catechins[J].Scientia Agricultura Sinica,42(8):2899-2908.]
    徐茂军,朱睦元,顾青.2003.发芽大豆中异黄酮积累的光诱导作用研究[J].中国粮油学报,(1):44-47.[Xu M J,Zhu M Y,Gu Q.2003.Light-induced effects of isoflavone accumulation in germinated soybean[J].Journal of the Chinese Cereals and Oils Association,(1):44-47.]
    张晓燕,鲁燕舞,魏圣军,崔瑾.2014.光质对大豆芽苗菜生长和大豆异黄酮含量及PAL活性的影响[J].大豆科学,33(1):46-52.[Zhang X Y,Lu Y W,Wei S J,Cui J.2014.Effects of light quality on growth,soy isoflavone content and PAL activity of soybean sprouts[J].Soybean Science,33(1):46-52.]
    朱新贵,郭勇,林捷.1999.光质对玫瑰茄悬浮细胞合成花青素的影响[J].华南理工大学学报(自然科学版),(3):57-60.[Zhu X G,Guo Y,Lin J.1999.Effects of monochromic light on synthesis of anthocyanin in roselle(Hibscus sabdariffa L.)cells suspension[J].Journal of South China University of Technology(Natural Science),(3):57-60.]
    Ahlgren P,Jarneving B,Rousseau R.2003.Requirements for a cocitation similarity measure,with special reference to Pearson’s correlation coefficient[J].Journal of the Association for Information Science&Technology,54(6):550-560.
    Alba R,Kelmenson P M,Cordonnier-Pratt M M,Pratt L H.2000.The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms[J].Molecular Biology and Evolution,17(3):362-373.
    Aphalo P J,Lehto T.1997.Effects of light quality on growth and N accumulation in birch seedlings[J].Tree Physiology,17(2):125-132.
    Aukerman M J,Hirschfeld M,Wester L,Weaver M,Clack T,Amasino R M,Sharrock R A.1997.A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing[J].The Plant Cell,9(8):1317-1326.
    Baldwin I T,Ohnmeiss T E.1994.Coordination of photosynthetic and alkaloidal responses to damage in uninducible and inducible Nicotiana sylvestris[J].Ecology,75(4):1003-1014.
    Bork P.1991.Shuffled domains in extracellular proteins[J].Febs Letters,286(1-2):47-54.
    Bradley J M,Murphy G P,Whitelam G C,Harberd N P.1996.Identification of phytochrome B amino acid residues mutated in three new phyB mutants of Arabidopsis thaliana[J].Journal of Experimental Botany,47(302):1449-1455.
    Clack T,Mathews S,Sharrock R A.1994.The phytochrome apoprotein family in Arabidopsis is encoded by five genes:The sequences and expression of PHYD and PHYE[J].Plant Molecular Biology,25(3):413-427.
    Deng J M,Bin J H,Pan R C.2002.Effect of light quality on the primary nitrogen assimination of rice(Oryza sativa L.)seedlings[J].Acta Botanica Sinica,42(3):234-238.
    Franklin K A,Quail P H.2010.Phytochrome functions in Arabidopsis development[J].Journal of Experimental Botany,61(1):11-24.
    Kawai H,Kanegae T,Christensen S,Kiyosue T,Sato Y,Imaizumi T,Kadota A,Wada M.2003.Responses of ferns to red light are mediated by an unconventional photoreceptor[J].Nature,421(6920):287-290.
    Li F W,Melkonian M,Rothfels C J,Villarreal J C,Stevenson D W,Graham S W,Wong G K S,Pryer K M,Mathews S.2005.Phytochrome diversity in green plants and the origin of canonical plant phytochromes[J].Nature Communications,6:7852.
    Mathews S,Lavin M,Sharrock R A.1995.Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms[J].Annals of the Missouri Botanical Garden,82(2):296-321.
    Quail P H.2002.Phytochrome photosensory signalling networks[J].Nature Reviews Molecular Cell Biology,3(2):85-93.
    Rockwell N C,Lagarias J C.2010.A brief history of phytochromes[J].Chemphyschem:A European Journal of Chemical Physics&Physical Chemistry,11(6):1172-1180.
    Rockwell N C,Su Y S,Lagarias J C.2006.Phytochrome structure and signaling mechanisms[J].Annual Review of Plant Biology,57(1):837-858.
    Sharrock R A,Quail P H.1989.Novel phytochrome sequences in Arabidopsis thaliana:Structure,evolution,and differential expression of a plant regulatory photoreceptor family[J].Genes&Development,3(11):1745-1757.
    Xia E H,Zhang H B,Sheng J,Li K,Zhang Q J,Changhoon Kim,Zhang Y,Liu Y,Zhu T,Li W,Huang H,Tong Y,Nan H,Shi C,Shi C,Jiang J J,Mao S Y,Jiao J Y,Zhang L P,Liu Y L,Liu B Y,Yu Y,Shao S F,Ni D J,Eichler E E,Gao L Z.2017.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J].Molecular Plant,10(6):866-877.
    Zhou Z W,Deng H L,Wu Q Y,Liu B B,Yue C,Deng T T,Lai Z X,Sun Y.2019.Validation of reference genes for gene expression studies in post-harvest leaves of tea plant(Camellia sinensis)[J].PeerJ:7:6385-4401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700