用户名: 密码: 验证码:
基于低场核磁共振探究解冻过程中肌原纤维水对鸡肉食用品质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Myofibrillar Water on Chicken Quality during Thawing as Studied by Low-Field Nuclear Magnetic Resonance
  • 作者:程天赋 ; 俞龙浩 ; 蒋奕 ; 张翼飞 ; 赵茉楠
  • 英文作者:CHENG Tianfu;YU Longhao;JIANG Yi;ZHANG Yifei;ZHAO Monan;College of Food Science, Heilongjiang Bayi Agricultural University;China-Canada Cooperation Food Research and Development Center of Heilongjiang Province;
  • 关键词:肌原纤维水 ; T2弛豫 ; 鸡胸肉 ; 解冻 ; 肉品质
  • 英文关键词:myofibrillar water;;T2 relaxation;;chicken breast;;thawing;;meat quality
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:黑龙江八一农垦大学食品学院;黑龙江省中加合作食品研究发展中心;
  • 出版日期:2019-05-15
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.598
  • 基金:国家自然科学基金面上项目(31171712)
  • 语种:中文;
  • 页:SPKX201909003
  • 页数:7
  • CN:09
  • ISSN:11-2206/TS
  • 分类号:24-30
摘要
本研究旨在基于低场核磁共振横向弛豫时间T_2分析解冻过程中肌原纤维水的分布及流动性与鸡肉食用品质间的关联性。以冷鲜鸡胸肉(宰后32h)为对照,采用冷藏解冻、微波解冻(微波-1、微波-2)与超声解冻(180、200 W)5种不同方式解冻中心温度为-20℃的冻结鸡胸肉,测定肉样T_2、品质特性指标并分析它们之间的相关性。结果显示:解冻过程中肉样的T_2水分分布情况发生明显变化,与对照组相比,除微波-2解冻外,其余4组解冻肉样均发生不易流动水T_(22)(40~50ms)向自由水T_(23)(100~250ms)迁移;同时,微波-2解冻与200 W超声解冻出现强结合水水分群T_(20)(0~0.1ms);相关性分析表明,T_(20)、T_(21)和T_(22)峰比例与肉样的持水能力、嫩度和多汁性呈极显著正相关(P<0.01),与解冻损失率、蒸煮损失率呈显著(P<0.05)或极显著(P<0.01)负相关;剪切力与T_(20)峰比例呈显著负相关(P<0.05),与T_(22)峰比例呈极显著负相关(P<0.01)。解冻方式对肉样的外观和风味无显著影响(P>0.05),微波-2解冻肉样的质地与多汁性评分最接近于对照组,整体可接受性更高;冷藏解冻与超声解冻肉样的质地与多汁性更差,整体可接受性也更低。因此,本项研究结果表明在解冻过程中肌原纤维水的迁移情况对鸡肉品质具有显著影响,并且微波-2解冻程序能够更好地抑制解冻过程中肉品质的下降。
        The purpose of this study was to analyze the relationship between myofibrillar water distribution and mobility and chicken meat quality during thawing by transverse relaxation times(T_2) of low-field nuclear magnetic resonance(LF-NMR). Chilled chicken breast(32 h after slaughter) was used as the control and frozen chicken breast with a core temperature of-20 ℃ was thawed by five different methods: refrigeration, microwave(modes 1 and 2) and ultrasonic(180 and 200 W). The distribution of water T_2 relaxation times and quality characteristics of meat samples were measured, and the correlation between them was analyzed. The results showed that during the thawing process, the T_2 distribution in meat samples changed significantly; compared with the control group, the immobilized water(T_(22), 40–50 ms) in all treatment groups except for microwave 2 was transformed into free water(T_(23), 100–250 ms). Thawing by microwave 2 and 200 W ultrasonic resulted in the emergence of the strongly bound water population(T_(20), 0–0.1 ms). The correlation analysis showed that the area proportions of T_(20), T_(21), and T_(22) peaks were significantly positively correlated with the water-holding capacity(WHC), tenderness and juiciness of meat samples(P < 0.01), and were significantly negatively correlated with thawing loss and cooking loss(P < 0.05 or 0.01). Shear force was significantly negatively correlated with the area proportion of T_(20)(P < 0.05) and T_(22)(P < 0.01) peaks. The thawing methods had no significant effect on the appearance or flavor of meat samples(P > 0.05). The microwave 2 thawed meat sample had the closest texture and juiciness to the control group, and was higher in overall acceptability, while the opposite was observed for the thawed meat samples from refrigeration and ultrasonic treatment.Therefore, the mobility of myofibrillar water during thawing has a significant impact on the quality of chicken meat, and microwave 2 can better prevent meat quality deterioration during thawing.
引文
[1]OFFER G, KNIGHT P, JEACOKE R, et al. The structural basis of the water-holding, appearance and toughness of meat and meat products[J]. Food Microstructure, 1989, 8(1): 151-170.
    [2]BREWER M S. Chemical and physical characteristics of meat: waterholding capacity[J]. Encyclopedia of Meat Sciences, 2014, 1: 274-282. DOI:10.1016/B978-0-12-384731-7.00247-6.
    [3]HUFF-LONERGAN E, LONERGAN S M. Mechanisms of waterholding capacity of meat: the role of postmortem biochemical and structural changes[J]. Meat Science, 2005, 71(1): 194-204. DOI:10.1016/j.meatsci.2005.04.022.
    [4]TROUT G R. Techniques for measuring water-binding capacity in muscle foods: a review of methodology[J]. Meat Science, 1988, 23(4): 235-252. DOI:10.1016/0309-1740(88)90009-5 .
    [5]BERTRAM H C, ANDERSEN H J. Applications of NMR in meat science[J]. Annual Reports of NMR Spectroscopy, 2004, 53: 157-202. DOI:10.1016/s0066-4103(04)53003-x.
    [6]BERTRAM H C, KARLSSON A H, RASMUSSEN M, et al. Origin of multiexponential T2 relaxation in muscle myowater[J]. Journal of Agricultural and Food Chemistry, 2001, 49(6): 3092-3100. DOI:10.1021/jf001402t.
    [7]BERTRAM H C, ANDERSEN H J. NMR and the water-holding issue of pork[J]. Journal of Animal Breeding and Genetics, 2007, 124: 35-42. DOI:10.1111/j.1439-0388.2007.00685.x.
    [8]GUIHENEUF T M, PARKER A D, TESSIER J J, et al. Authentication of the effect of freezing/thawing of pork by quantitative magnetic resonance imaging[J]. Magnetic Resonance in Chemistry, 1997, 35: S112-S118. DOI:10.1002/(SICI)1097-458X(199712)35: 133.0.CO;2-R.
    [9]SUN D W. Handbook of frozen food processing and packaging[M]. 2nd ed. Boca Raton: CRC Press, 2011: 3-38. DOI:10.1201/b11204.
    [10]ZHAN X M, SUN D W, ZHU Z H, et al. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: a review[J]. Critical Reviews in Food Science & Nutrition, 2018, 58(17): 2925-2938. DOI:10.1080/10408398.2017.1345854.
    [11]AKHTAR S, KHAN M I, FAIZ F. Effect of thawing on frozen meat quality: a comprehensive review[J]. Pakistan Journal of Food Sciences 2013, 23(4): 198-211.
    [12]PEEMOELLER H, PINTAR M M, KYDON D W. Nuclear magnetic resonance analysis of water in natural and deuterated mouse muscle above and below freezing[J]. Biophysical Journal, 1980, 29(3): 427-435. DOI:10.1016/s0006-3495(80)85144-7.
    [13]BERTRAM H C, WHITTAKER A K, ANDERSEN H J, et al. pH Dependence of the progression in NMR T2 relaxation times in postmortem muscle[J]. Journal of Agricultural and Food Chemistry, 2003, 51(14): 4072-4078. DOI:10.1021/jf020968.
    [14]LEYGONIE C, BRITZ T J, HOFFMAN L C. Impact of freezing and thawing on the quality of meat: review[J]. Meat Science, 2012, 91(2): 93-98. DOI:10.1016/j.meatsci.2012.01.013.
    [15]程天赋,蒋奕,张翼飞,等.基于低场核磁共振研究不同解冻方式对冻猪肉食用品质的影响[J].食品科学, 2019, 40(7): 20-26. DOI:10.7506/spkx1002-6630-20171127-333.
    [16]张昕,宋蕾,高天,等.超声波解冻对鸡胸肉品质的影响[J].食品科学, 2018, 39(5): 135-140. DOI:10.7506/spkx1002-6630-201805021.
    [17]蒋奕,程天赋,王吉人,等.超声波解冻对猪肉品质的影响[J].肉类研究, 2017, 31(11): 14-19. DOI:10.7506/rlyj1001-8123-201711003.
    [18]苑瑞生.滚揉工艺对鸡肉调理制品食用品质影响的研究[D].泰安: 山东农业大学, 2011: 21. DOI:10.7666/d.d144223.
    [19]KU S K, JEONG J Y, PARK J D, et al. Quality evaluation of pork with various freezing and thawing methods[J]. Korean Journal for Food Science of Animal Resources, 2014, 34(5): 597-603. DOI:10.5851/kosfa.2014.34.5.597.
    [20]常海军,唐翠,唐春红.不同解冻方式对猪肉品质特性的影响[J].食品科学, 2014, 35(10): 1-5. DOI:10.7506/spkx1002-6630-201410001.
    [21]YU L H, LEE E S, JEONG J Y, et al. Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles[J]. Meat Science, 2005, 71(2): 375-382. DOI:10.1016/j.meatsci.2005.04.020.
    [22]STEWART M K, FLETCHER D L, HAMM D, et al. The Influence of hot boning broiler breast muscle on pH decline and toughening[J]. Poultry Science, 1984, 63(10): 1935-1939. DOI:10.3382/ps.0631935.
    [23]CAMPANONE L A, ROCHE L A, SALVADORI V O, et al. Monitoring of weight losses in meat products during freezing and frozen storage[J]. Food Science and Technology International, 2002, 8(4): 229-238. DOI:10.1106/108201302028555.
    [24]LAGERSTEDT ?, ENF?LT L, JOHANSSON L, et al. Effect of freezing on sensory quality, shear force and water loss in beef M.longissimus dorsi[J]. Meat Science, 2008, 80(2): 457-461. DOI:10.1016/j.meatsci.2008.01.009.
    [25]FAROUK M M, SWAN J E. Effect of rigor temperature and frozen storage on functional properties of hot-boned manufacturing beef[J]. Meat Science, 1998, 49(2): 233-247. DOI:10.1016/s0309-1740(97)00134-4.
    [26]KRISTENSEN L, PURSLOW P P. The effect of ageing on the waterholding capacity of pork: role of cytoskeletal proteins[J]. Meat Science, 2001, 58(1): 17-23. DOI:10.1016/s0309-1740(00)00125-x.
    [27]廖彩虎,芮汉明,张立彦,等.超高压解冻对不同方式冻结的鸡肉品质的影响[J].农业工程学报, 2010, 26(2): 331-337. DOI:10.3969/j.issn.1002-6819.2010.02.057.
    [28]HUTCHISON C L, MULLEY R C, WIKLUND E, et al. Consumer evaluation of venison sensory quality: effects of sex, body condition score and carcase suspension method[J]. Meat Science, 2010, 86(2): 311-316. DOI:10.1016/j.meatsci.2010.04.031.
    [29]LAWRIE R A, LEDWARD D A. Lawrie’s meat science[M]. 7th ed. Cambridge: Woodhead Publishing Limited, 2006: 48-49.
    [30]MARCOS B, KERRY J P, MULLEN A M. High pressure induced changes on sarcoplasmic protein fraction and quality indicators[J]. Meat Science, 2010, 85(1): 115-120. DOI:10.1016/j.meatsci.2009.12.014.
    [31]TORNBERG E. Effects of heat on meat proteins: implications on structure and quality of meat products[J]. Meat Science, 2005, 70(3): 493-508. DOI:10.1016/j.meatsci.2004.11.021.
    [32]FAROUK M M, WIELICZKO K, LIM R, et al. Cooked sausage batter cohesiveness as affected by sarcoplasmic proteins[J]. Meat Science, 2002, 61(1): 85-90. DOI:10.1016/s0309-1740(01)00168-1.
    [33]PRZYBYLSKI W, KACZOR D, JAWORSKA D, et al. Sarcoplasmic protein profile from drip loss in relation to pork quality[J]. Journal of Food Science, 2016, 81(10): C2320-C2326. DOI:10.1111/1750-3841.13424.
    [34]BERTRAM H C, SCH?FER A, ROSENVOLD K, et al. Physical changes of significance for early post mortem water distribution in porcine M.longissimus[J]. Meat Science, 2004, 66(4): 915-924. DOI:10.1016/s0309-1740(03)00188-8.
    [35]马莹,杨菊梅,王松磊,等.基于LF-NMR及成像技术分析牛肉贮藏水分含量变化[J].食品工业科技, 2018, 39(2): 278-284. DOI:10.13386/j.issn1002-0306.2018.02.052.
    [36]PEARCE K L, ROSENVOLD K, ANDERSEN H J, et al. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes: a review[J]. Meat Science, 2011, 89(2): 111-124. DOI:10.1016/j.meatsci.2011.04.007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700