用户名: 密码: 验证码:
基于低场核磁共振技术的黏土表面水化水定量测试与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative test and analysis of clay surface hydration water based on low-field nuclear magnetic resonance technology
  • 作者:苏俊霖 ; 董汶鑫 ; 罗平亚 ; 徐显广 ; 黄进军
  • 英文作者:Su Junlin;Dong Wenxin;Luo Pingya;Xu Xianguang;Huang Jinjun;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University;CNPC Engineering Technology Research & Development Company Limited;
  • 关键词:黏土 ; 表面水化 ; 低场核磁共振 ; 定量测试 ; 评价
  • 英文关键词:clay;;surface hydration;;low-field nuclear magnetic resonance;;quantitative test;;evaluation
  • 中文刊名:SYXB
  • 英文刊名:Acta Petrolei Sinica
  • 机构:西南石油大学油气藏地质及开发工程国家重点实验室;中国石油集团工程技术研究院有限公司;
  • 出版日期:2019-04-15
  • 出版单位:石油学报
  • 年:2019
  • 期:v.40
  • 基金:国家科技重大专项(2016ZX05022-001);; 中国石油天然气集团有限公司重大应用基础研究(2016A-3903)资助
  • 语种:中文;
  • 页:SYXB201904008
  • 页数:7
  • CN:04
  • ISSN:11-2128/TE
  • 分类号:90-96
摘要
黏土矿物的水化类型及水化程度研究是目前水基钻井液优快钻进泥页岩地层的重点与难点之一。应用等温吸附实验及黏土层间距变化规律,确定了黏土不同类型水化水的相对平衡压界限;基于低场核磁共振T_2弛豫谱与水分子运动性关系、黏土层间距变化与水化水分子直径的相对关系,确定了T_2值范围所对应的黏土水化类型;根据T_2信号幅值与水分子氢质子数呈正比的原理,建立了T_2值与黏土水含量标准曲线,确定了T_2信号幅度与黏土含水量的定量关系。实验结果表明,经3 500r/min、离心10 min的饱水钠膨润土的表面水化水、渗透水化水、自由水对应的T_2值范围分别为8.91~73.17μs,0.97~10.23 ms,>71.49 ms;上述钠膨润土的表面水化水、渗透水化水、自由水的质量含量比例分别为9.62%、61.49%、28.88%。
        The research on the hydration type and degree of clay minerals is one of the key factors and difficult points for the fast drilling of water-based fluid into shale formation.In this study,the isothermal adsorption experiment and the variation law of clay spacing are applied to determine the relative equilibrium pressure limits of different types of hydration water for clay.Then,based on the relationship between theT_2 relaxation spectrum of low-field nuclear magnetic resonance and the mobility of water molecules as well as the relative relationship between the changes in interlayer spacing of clay and the diameter of hydration water molecules,the type of clay hydration corresponding to the T_2 value range was determined.According to the principle that the amplitude of T_2 signal is proportional to the number of hydrogen protons of water molecules,the standard curve of T_2 value and clay water content has been established to determine the quantitative relationship between T_2 signal amplitude and clay water content.The experimental results show that the surface hydration water,permeated hydration water and free water of saturated sodium bentonite after centrifugation at3500 r/min for 10 min correspond to T_2 values ranging from8.91 to 73.17μs,0.97 to 10.23 ms,and more than71.49 ms respectively;The proportions of surface hydration water,permeated hydration water and free water of the above sodium bentonite are 9.62%,61.49% and 28.88%respectively.
引文
[1]黄汉仁,杨坤鹏,罗平亚.泥浆工艺原理[M].北京:石油工业出版社,1981.HUANG Hanreng,YANG Kunpeng,LUO Pingya.Principle of mud process[M].Beijing:Petroleum Industry Publishing House,1981.
    [2]VAN OLPHEN H.An introduction to clay colloid chemistry:for clay technologists,geologists,and soil scientists[M].London:Interscience,1963.
    [3]邱正松,钟汉毅,黄维安.新型聚胺页岩抑制剂特性及作用机理[J].石油学报,2011,32(4):678-682.QIU Zhengsong,ZHONG Hanyi,HUANG Weian.Properties and mechanism of a new polyamine shale inhibitor[J].Acta Petrolei Sinica,2011,32(4):678-682.
    [4]宋然然,蒋官澄,宣扬,等.超支化聚乙烯亚胺作为高效水基钻井液页岩抑制剂的研究[J].油田化学,2017,34(3):390-396.SONG Ranran,JIANG Guancheng,XUAN Yang,et al.Hyperbranched polyethyleneimine using as efficient shale inhibitor for water-based drilling fluid[J].Oilfield Chemistry,2017,34(3):390-396.
    [5]黄林基,罗兴树.用CST仪评价聚合物抑制性实验方法的研究[J].钻井液与完井液,1995,12(1):1-5.HUANG Linji,LUO Xingshu.Study on the testing method of polymer inhibity evaluation by capillary suction time tester[J].Drilling Fluid and Completion Fluid,1995,12(1):1-5.
    [6]张保平,单文文,田国荣,等.泥页岩水化膨胀的实验研究[J].岩石力学与工程学报,2000,19(S1):910-912.ZHANG Baoping,SHAN Wenwen,TIAN Guorong,et al.Testing study on the hydration of shale[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(S1):910-912.
    [7]谢刚,邓明毅,张龙.黏土结合水的热分析定量研究方法[J].钻井液与完井液,2013,30(6):1-4.XIE Gang,DENG Mingyi,ZHANG Long.A study on the influence of electrolytes on clay bound water[J].Drilling Fluid &Completion Fluid,2013,30(6):1-4.
    [8]王平全,李晓红.用热失重法确定水合粘土水分含量及存在形式[J].天然气工业,2006,26(1):80-83.WANG Pingquan,LI Xiaohong.Thermal-weightlessness method to determine water content and existing form of hydratable clay[J].Natural Gas Industry,2006,26(1):80-83.
    [9]狄勤丰,张景楠,叶峰,等.驱替过程中重力舌进特征的核磁共振可视化实验[J].石油学报,2017,38(10):1183-1188.DI Qinfeng,ZHANG Jingnan,YE Feng,et al.Nuclear magnetic resonance visualization experiment of gravity tongue characteristics in the displacement process[J].Acta Petrolei Sinica,2017,38(10):1183-1188.
    [10]LI Zhiqing,QI Zhiyu,SHEN Xin,et al.Research on quantitative analysis for nanopore structure characteristics of shale based on NMR and NMR cryoporometry[J].Energy &Fuels,2017,31(6):5844-5853.
    [11]MITCHELL J,GLADDEN L F,CHANDRASEKERA T C,et al.Low-field permanent magnets for industrial process and quality control[J].Progress in Nuclear Magnetic Resonance Spectroscopy,2014,76:1-60.
    [12]刘标,姚素平,胡文瑄,等.核磁共振冻融法表征非常规油气储层孔隙的适用性[J].石油学报,2017,38(12):1401-1410.LIU Biao,YAO Suping,HU Wenxuan,et al.Application of nuclear magnetic resonance cryoporometry in unconventional reservoir rocks[J].Acta Petrolei Sinica,2017,38(12):1401-1410.
    [13]SONG Ping,XU Jing,MA Henan,et al.Moisture phase state and distribution characteristics of seed during rice seed soaking process by low field nuclear magnetic resonance[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(6):204-210.
    [14]LI Junhua,LI Xin,WANG Chenying,et al.Characteristics of gelling and water holding properties of hen egg white/yolk gel with NaCl addition[J].Food Hydrocolloids,2017,77:887-893.
    [15]肖佃师,卢双舫,姜微微,等.基于粒间孔贡献量的致密砂岩储层分类——以徐家围子断陷为例[J].石油学报,2017,38(10):1123-1134.XIAO Dianshi,LU Shuangfang,JIANG Weiwei,et al.Classification of tight sandstone reservoirs based on the contribution of intergranular pores:a case study of Xujiaweizi fault depression[J].Acta Petrolei Sinica,2017,38(10):1123-1134.
    [16]谭龙,韦昌富,田慧会,等.冻土未冻水含量的低场核磁共振试验研究[J].岩土力学,2015,36(6):1566-1572.TAN Long,WEI Changfu,TIAN Huihui,et al.Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J].Rock and Soil Mechanics,2015,36(6):1566-1572.
    [17]高树生,胡志明,刘华勋,等.不同岩性储层的微观孔隙特征[J].石油学报,2016,37(2):248-256.GAO Shusheng,HU Zhiming,LIU Huaxun,et al.Microscopic pore characteristics of different lithological reservoirs[J].Acta Petrolei Sinica,2016,37(2):248-256.
    [18]SUN Xiaoxiao,YAO Yanbin,LIU Dameng,et al.Interactions and exchange of CO2and H2O in coals:an investigation by lowfield NMR relaxation[J].Scientific Reports,2016,6:19919.
    [19]FLEURY M,KOHLER E,NORRANT F,et al.Characterization and quantification of water in smectites with low-field NMR[J].Journal of Physical Chemistry C,2013,117(9):4551-4560.
    [20]高汉宾,张振芳.核磁共振原理与实验方法[M].武汉:武汉大学出版社,2008.GAO Hanbin,ZHANG Zhenfang.Nuclear magnetic resonance[M].Wuhan:Wuhan University Press,2008.
    [21]XU Hao,TANG Dazhen,ZHAO Junlong,et al.A precise measurement method for shale porosity with low-field nuclear magnetic resonance:A case study of the Carboniferous–Permian strata in the Linxing area,eastern Ordos Basin,China[J].Fuel,2015,143:47-54.
    [22]王平全.粘土表面结合水定量分析及水合机制研究[D].成都:西南石油学院,2001.WANG Pingquan.The study for quantitative analysis of water absorbed on clays and their hydration mechanism[D].Chengdu:Southwest China Petroleum Institute,2001.
    [23]李生林.土中结合水译文集[M].北京:地质出版社,1982:25-36.LI Shenglin.A set of translations of bound water in clay[M].Beijing:Geological House,1982:25-36.
    [24]李生林.苏联对土中结合水研究的某些进展[J].水文地质工程地质,1982(5):56-59.LI Shenglin.Some progress of Soviet Union of bound water in clay[J].Hydrogeology Engineering Geology,1982(5):56-59.
    [25]苏俊霖,董汶鑫,冯杰,等.黏土表面结合水的低场核磁共振定量研究[J].钻井液与完井液,2018,35(1):8-12.SU Junlin,DONG Wenxin,FENG Jie,et al.Quantitative study on surface bound water of clay with low field NMR[J].Drilling Fluid &Completion Fluid,2018,35(1):8-12.
    [26]ZHONG Hanyi,QIU Zhengsong,HUANG Weian,et al.Synergistic stabilization of shale by a mixture of polyamidoamine dendrimers modified bentonite with various generations in waterbased drilling fluid[J].Applied Clay Science,2015,114:359-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700