用户名: 密码: 验证码:
转底炉平焰烧嘴燃烧过程的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Combustion in a Flat Burner of Rotary Hearth Furnace
  • 作者:刘雨 ; 仇灝 ; 刘和平
  • 英文作者:Yu LIU;Hao QIU;Heping LIU;State Key Laboratory of Advanced Steel Processes and Products, Central Iron & Steel Research Institute;
  • 关键词:转底炉 ; 烧嘴 ; 数值模拟 ; 涡耗散模型 ; 非预混燃烧模型
  • 英文关键词:rotary hearth furnace;;burner;;numerical simulation;;eddy dissipation model;;non-premixed combustion model
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:钢铁研究总院先进钢铁流程及材料国家重点实验室;
  • 出版日期:2017-06-15
  • 出版单位:过程工程学报
  • 年:2017
  • 期:v.17
  • 基金:国家科技支撑计划基金资助项目(编号:2013BAE07B00)
  • 语种:中文;
  • 页:HGYJ201703014
  • 页数:8
  • CN:03
  • ISSN:11-4541/TQ
  • 分类号:92-99
摘要
分别采用涡耗散模型和非预混燃烧模型模拟烧嘴内的燃烧条件.结果表明,增加煤气喷入速度和降低空气喷入速度,C_xH_y,CO和H_2的消耗速率及CO_2和H_2O的生成速率减小,火焰长度增加.相同计算条件下,采用涡耗散模型计算的高温区域比非预混燃烧模型计算的高温区域集中;煤气喷入速度增加,涡耗散模型计算的回流区域减小,空气喷入速度增加,回流区域略有增加,煤气喷入速度和空气喷入速度变化对非预混燃烧模型计算的回流区域无影响.涡耗散模型预测流场分布更准确,非预混燃烧模型预测温度分布更准确.
        The combustion condition of the burner was calculated by the eddy dissipation model and the non-premixed combustion model respectively. The results showed that when the velocity of coal gas injection increases or the velocity of air injection decreased, each consumption rate of C_xH-y, CO and H_2 reduced, and each production rate of CO_2 and H_2O also reduced, and the length of the flame adds. The area of the highest temperature calculated by the eddy dissipation model was more concentrated than that by non-premixed combustion model. With the velocity of coal gas injection increasing, the area of backflow region calculated by eddy dissipation model reduced, the velocity of air injection increasing, the area of backflow region increasing slightly. Both the velocities change of coal gas injection and air injection had no influence on the area of backflow region calculated by non-premixed model. Comparing the calculation results of two models, the flow field calculated by eddy dissipation model was more accurate, the temperature field calculated by non-premixed model was more accurate instead.
引文
[1]张颖异,师学峰,齐渊洪,等.ITmk3的工艺特点和商业应用现状[J].中国有色冶金,2014,4(2):17-21.Zhang Y Y,Shi X F,Qi Y H,et al.Characteristic and Commercial Application of ITmk3 Process[J].China Nonferrous Metallurgy,2014,4(2):17-21.
    [2]曾丹林,马亚丽,王光辉,等.钢铁厂含铁粉尘综合利用研究进展[J].烧结球团,2011,36(6):45-48.Zeng D L,Ma Y L,Wang G H,et al.Research Advancement of Comprehensive Utilization of Iron-bearing Dust in Iron and Steel Plants[J].Sintering and Pelletizing,2011,36(6):45-48.
    [3]许海川,周和敏,齐渊洪,等.转底炉处理钢厂固废工艺的工程化及其生产实践[J].钢铁,2012,47(3):89-93.Xu H C,Zhou H M,Qi Y H,et al.Engineering and Productive Practice on Rotary Hearth Furnace for Steel Dust and Sludge[J].Iron and Steel,2012,47(3):89-93.
    [4]何桂珍,都兴红,曲赫威,等.非高炉冶炼技术的发展现状与展望[J].矿产综合利用,2014,6(3):1-7.He G Z,Du X H,Qu H W,et al.Present Status and Development Perspective of Non-blast Furnace Ironmaking Technology[J].Multipurpose Utilization of Mineral Resources,2014,6(3):1-7.
    [5]伦志刚,胡途,吕学伟,等.多层含碳球团转底炉内直接还原行为[J].钢铁,2013,48(1):15-19.Lun Z G,Hu T,Lv X W,et al.Direct Reduction Behavior of Multi-layer Pellets with Carbon-containing in Rotary Hearth Furnace[J].Iron and Steel,2013,48(1):15-19.
    [6]胡俊鸽,杜续恩,周文涛.工业化转底炉炼铁技术的现状及评述[J].烧结球团,2013,2(1):36-41.Hu J G,Du X E,Zhou W T,et al.Present Situation of Industrialized RHF Technology and Its Review[J].Sintering and Pelletizing,2013,2(1):36-41.
    [7]梁强,曾加庆,齐渊洪.含磷炉渣处理技术的回顾与展望[J].钢铁,2015,50(1):69-74.Liang Q,Zeng J Q,Qi Y H.Retrospect and Prospect of the Technology of Phosphatic Slag Treatment[J].Iron and Steel,2015,50(1):69-74.
    [8]徐萌.转底炉煤基热风熔融炼铁工艺的基础性研究[D].北京:北京科技大学,2006:3-15.Xu M.Fundamental Research on Coal Hot-air Rotary Hearth Furnace Process[D].Beijing:University of Science and Technology Beijing,2006:3-15.
    [9]Wu Y L,Jiang Z Y,Zhang X X,et al.Numerica1 Simulation of the Direct Reduction of Pellets in a Rotary Hearth Furnace for Zinc-containing Metallurgical Dust Treatment[J].Int.J.Miner.Metall.Mater.,2013,2(7):636-643.
    [10]常峰,索建秦,梁红侠.EDU和PDF模型在燃烧室上的应用[J].科学技术与工程,2012,12(15):3699-3701.Chang F,Suo J Q,Liang H X,et al.The Application of the PDF and EBU Models Using in Combustor’s Development[J].Science Technology and Engineering,2012,12(15):3699-3701.
    [11]郑洪涛,穆勇,李智明.湍流燃烧模型在燃气轮机燃烧室模拟中的运用与对比[J].热能动力工程,2010,25(1):12-13.Zheng H T,Mu Y,Li Z M,et al.Application and Contrast of Turbulent-flow Combustion Models for Smiulating a Gas Turbine Combustor[J].Journal of Engineering for Thermal Energy and Power,2010,25(1):12-13.
    [12]Kurosea R,Makinob H,Suzukic A.Numerical Analysis of Pulverized Coal Combustion Characteristics Using Advanced Low-NOx Burner[J].Fuel,2004,83:693-703.
    [13]Reis L C B S,Carvalho Jr J A,Nascimento M A R,et al.Numerical Modeling of Flow through an Industrial Burner Orifice[J].Appl.Therm.Eng.,2014,67:201-213.
    [14]Cui K,Liu B,Wu Y X,et al.Numerical Simulation of Oxy-Coal Combustion for a Swirl Burner with EDC Model[J].Chinese Journal of Chemical Engineering,2014,22(2):193-201.
    [15]Zhou H,Yang Y,Liu H Z,et al.Numerical Simulation of the Combustion Characteristics of a Low NOx Swirl Burner:Influence of the Primary Air Pipe[J].Fuel,2014,130:168-176.
    [16]刘威,龙鹏,柴满林,等.基于两种烧嘴的铜精炼阳极炉内燃烧过程数值模拟[J].过程工程学报,2015,15(2):259-264.Liu W,Long P,Chai M L,et al.Numerical Simulation of Gaseous Combustion Process in Anode Furnace of Copper Refining with Two Types of Burner[J].Chin.J.Process Eng.,2015,15(2):259-264.
    [17]肖丹,刘鸿勋,杨涛.空气单蓄热烧嘴燃烧过程的数值模拟与设计参数优化[J].工业炉,2012,34(6):49-50.Xiao D,Liu H X,Yang T.Numerical Simulation and Parameters Optimization of Combustion Process of Air Single-regenerative Burner[J].Industrial Furnace,2012,34(6):49-50.
    [18]潘小兵,孙兆虎.双旋流平焰烧嘴的数值模拟[J].工业加热,2007,36(3):47-50.Pan X B,Sun Z H.Numerical Simulation of Flat Flame Burner[J].Industrial Heating,2007,36(3):47-50.
    [19]肖丹.天然气单蓄热烧嘴富氧燃烧的数值模拟[J].工业炉,2014,36(2):6-8.Xiao D.Numerical Simulation for Oxygen-enriched Combustion of Natural Gas Air?Single Regenerative Burner[J].Industrial Furnace,2014,36(2):6-8.
    [20]Wang J M,Xu P,Yan H J,et al.Burner Effects on Melting Process of Regenerative Aluminum Melting Furnace[J].Trans.Nonferrous Met.Soc.China,2013,23:3125-3136.
    [21]Danon B,Cho E S,Jong W D,et al.Numerical Investigation of Burner Positioning Effects in a Multi-burner Flameless[J].Appl.Therm.Eng.,2011,31:3885-3896.
    [22]Pourramezan M,Kahrom M,Passandideh-Fard M.Numerical Investigation on the Lifetime Decline of Burners in a Wall-fired Dual-Fuel Utility Boiler[J].Appl.Therm.Eng.,2015,82:141-151.
    [23]赵博宁,李健.射流夹角对炉内烟气浓度和流速分布影响的数值模拟[J].工业炉,2014,36(6):9-12.Zhao B N,Li J.Numerical Simulation of Influence of Jet Angle on Gas Concentration and Velocity Distribution[J].Industrial Furnace,2014,36(6):9-12.
    [24]周萍,陈卓,王晓松.圆形蓄热式熔铝炉内非稳态多场耦合数值模拟与参数优化[J].中国有色金属学报,2012,22(9):2700-2701.Zhou P,Chen Z,Wang X S.Transient Multi-field Coupled Simulation and Parameters Optimization of Cylindrical Regenerative Aluminum Melting Furnace[J].The Chinese Journal of Nonferrous Metals,2012,22(9):2700-2701.
    [25]Liu Y,Su F Y,Wen Z,et al.CFD Modeling of Flow,Temperature,and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace[J].Metall.Mater.Trans.B,2014,45B:251-261.
    [26]高金涛,周春芳,朱荣.转底炉分区域供热研究[J].北京科技大学学报,2014,36(增刊1):110-116.Gao J T,Zhou C F,Zhu R.Research on the Heat Supply of Different Sections in a Rotary Hearth Furnace[J].Journal of University of Science and Technology Beijing,2014,36(S1):110-116.
    [27]周春芳,刘润藻,樊计生,等.转底炉内温度场及流场的数值模拟[J].工业加热.2010,39(6):43-45.Zhou C F,Liu R Z,Fan J S,et al.Numerical Simulation of Temperature Field and Flow Field in Rotary Heath Furnace[J].Industrial Heating,2010,39(6):43-45.
    [28]武宇亮,姜泽毅,张欣欣,等.转底炉内温度场及流场的数值模拟[J].过程工程学报,2012,12(5):803-808.Wu Y L,Jiang Z Y,Zhang X X,et al.Numerical Simulation on Reduction of Zinc-containing Steel-making Dust Pellets in a Rotary Hearth Furnace[J].Chin.J.Process Eng.,2012,12(5):803-808.
    [29]王璋保,张建国,章金法.天然气平焰烧嘴的研究[J].工业加热,2000,29(1):22-26.Wang Z B,Zhang J G,Zhang J F.Experimental Study of the Natural Gas Flat Flame Burner[J].Industrial Heating,2000,29(1):22-26.
    [30]苏亚欣,汪文辉,赵丹,等.射流参数对单烧嘴燃烧室高温空气燃烧特性的影响的数值研究[J].钢铁,2010,45(7):94-98.Su Y X,Wang W H,Zhao D,et al.Numerical Simulation of the Effect of Burner Jets Parameters on High Temperature Air Combustion[J].Iron and Steel,2010,45(7):94-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700