用户名: 密码: 验证码:
路基土体“时变覆盖效应”的数值模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:NUMERICAL SIMULATION AND ANALYSIS OF ‘TIME-VARYING CANOPY EFFECT’ OF MOISTURE TRANSPORT IN SUBGRADE SOIL
  • 作者:宋二祥 ; 仝睿 ; 罗爽 ; 李鹏
  • 英文作者:SONG Er-xiang;TONG Rui;LUO Shuang;LI Peng;Key Laboratory of Civil Engineering Safety and Durability of the State Ministry of Education, Tsinghua University;
  • 关键词:时变覆盖效应 ; 水分迁移 ; 蒸发 ; 冻胀 ; 数值模拟
  • 英文关键词:time-varying canopy effect;;moisture transport;;evaporation;;frost heave;;numerical simulation
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:清华大学土木工程系土木工程安全与耐久教育部重点试验室;
  • 出版日期:2019-08-13
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家重点基础研究发展计划(973计划)课题项目(2014CB047003);; 国家自然科学基金项目(41272279,51778339)
  • 语种:中文;
  • 页:GCLX201908003
  • 页数:10
  • CN:08
  • ISSN:11-2595/O3
  • 分类号:33-42
摘要
针对寒区铁路路基浅层土体冻结状况变化时使其透气透水性(覆盖条件)改变,进而影响其内水分迁移、集聚乃至冻胀的现象,提出"时变覆盖效应"这一概念。基于非等温水热气耦合运移模型以及刚性冰模型,建立了对路基土体内水分迁移、冻胀发展进行模拟的数学模型。对时变覆盖效应下水分迁移与冻胀的一维问题进行模拟,揭示了时变覆盖效应下路基土体水分蒸发、迁移的规律。模拟结果显示,时变覆盖效应下,土体的冻胀量较全时完全覆盖条件下相比较小,但仍有可能对铁路设施造成危害。此外,该文还对土性、温差大小以及初始含水量对时变覆盖效应的影响进行了分析。
        The top cover condition of railway subgrade may change from evaporation boundary to sealed boundary after frozen in winter time,which will influence the transportation of moisture up from the bottom and its accumulation beneath the frozen surface. The concept of ‘time-varying canopy effect’ is introduced and a mathematical model is established for its analysis based on the non-isothermal coupled water and heat migration model as well as the rigid ice model. Water migration in one-dimension soil column is simulated considering constant canopy effect and ‘time-varying canopy effect’ respectively. Simulation results show that the frost heave under time-varying canopy conditions is smaller than that under constant canopy conditions,but it may still be large enough to disturb the normal performance of the railway. The influences of soil type, temperature difference and initial water content on the ‘time-varying canopy effect’ are also discussed.
引文
[1]徐斅祖,王家澄,张立新.冻土物理学[M].北京:科学出版社.2001Xu Xiaozu,Wang Jiacheng,Zhang Lixin.Frozen soil physics[M].Beijing:The Science Publishing Company.2001.(in Chinese)
    [2]Taber S.The mechanics of frost heaving[J].Journal of Geology,1930,38(4):303―317.
    [3]Peppin S L,Style R W.The physics of frost heave and ice-lens growth[J].Vadose Zone Journal,2013,12(1):1―12.
    [4]Wark K J.Generalized thermodynamic relationships.Thermodynamics,5th ed[M].New York:McGraw-Hill,Inc.,1988.
    [5]Miller R D.Freezing and heaving of saturated and unsaturated soils[J].Highway Research Record,1972,393:1―11.
    [6]Harlan R L.Analysis of coupled heat-fluid transport in partially frozen soil[J].Water Resource Research,1973,9:1314―1323.
    [7]Miller.Frost heaving in non-colloidal soils[C].Proceedings of the 3rd International Conference on Permafrost,.Edmonton,AB,Canada.10-13 July,1978.Natl.Res.Counc.of Canada,Ottawa,1978,1:708―713.
    [8]Konrad J,Duquennoi C.A Model for water transport and ice lensing in freezing soils[J].Water Resources Research,1993,29(9):3109―3124.
    [9]李强,姚仰平,韩黎明,等.土体的“锅盖效应”[J].工业建筑,2014,44(2):69―71.Li Qiang,Yao Yangping,Han Liming,et al.Pot-cover effect of soil[J].Industrial Construction,2014,44(2):69―71.(in Chinese)
    [10]滕继东,贺佐跃,张升,等.非饱和土水气迁移与相变:两类“锅盖效应”的发生机理及数值再现[J].岩土工程学报,2016,38(10):1813―1821.Teng Jidong,He Zuoyue,Zhang Sheng,et al.Moisture transfer and phase change in unsaturated soils:physical mechanism and numerical model for two types of“canopy effect”[J].Chinese Journal of Geotechnical Engineering.2016,38(10):1813―1821.(in Chinese)
    [11]宋二祥,罗爽,孔郁斐,等.路基土体“锅盖效应”的数值模拟分析[J].岩土力学,2017,38(6):1781―1788.Song Erxiang,Luo Shuang,Kong Yufei,et al.Simulation and analysis of pot-cover effect on moisture transport in subgrade soil[J].Rock and Soil Mechanics,2017,38(6):1781―1788.(in Chinese)
    [12]Zhang S,Teng J,He Z,et al.Importance of vapor flow in unsaturated freezing soil:a numerical study[J].Cold Regions Science&Technology,2016,126(6):1―9.
    [13]Sheng D,Zhang S,Yu Z,et al.Assessing frost susceptibility of soils using PC Heave[J].Cold Regions Science&Technology,2013,95(11):27―38.
    [14]Philip J R,De Vries D A.Moisture movement in porous materials under temperature gradient[J].Trans am Geophys Union,1957,38(2):222―232.
    [15]Taylor G S,Luthin J N.A model for coupled heat and moisture transfer during soil freezing[J].Canadian Geotechnical Journal,1978,15(4):548―555.
    [16]Saito H,Simunek J,Scanlon B R,et al.Numerical analysis of coupled water,vapor and heat transport in the vadose zone using HYDRUS[J].Vadose Zone Journal,2006,5(2):784―800.
    [17]Simunek,Saito,Sakai,et al.The hydrus-1D software package for simulating the one-dimensional movement of water,heat,and multiple solutes in variably-saturated media[EB].Departmeat of Environmental Sciences,University of California Riverside,2005.
    [18]Gaylon S Campbell.Soil physics with BASIC:transport models for soil-plant systems[M].Amsterdam:Vol.14Elsevier,1985.
    [19]夏锦红,陈之祥,夏元友,等.不同负温条件下冻土导热系数的理论模型和试验验证[J].工程力学,2018,35(5):109―117.Xia Jinhong,Chen Zhixiang,Xia Yuanyou,et al.Theoretical model and experimental verification on thermal conductivity of frozen soil under different negative temperature conditions[J].Engineering Mechanics,2018,35(5):109―117.(in Chinese)
    [20]原喜忠,李宁,赵秀云,等.非饱和(冻)土导热系数预估模型研究[J].岩土力学,2010,31(9):2689―2694.Yuan Xizhong,Li Ning,Zhao Xiuyun,et al.Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J].Rock and Soil Mechanics,2010,31(9):2689―2694.(in Chinese)
    [21]Williams.Suction and its effects in unfrozen water of frozen soils.In:Permafrost,proceedings of an international conference[C].Washington,DC:National Academy of Sciences,1966:225―229.
    [22]Williams P J.Properties And Behavior Of Freezing Soils[M].Norwegian:Norwegian Geotechnical Institute,1967.
    [23]Anderson,Tice A R.Predicting unfrozen water contents in frozen soils from surface area measurements[J].Highway Research Record,1972,393(2):12―18.
    [24]Fisher E A.The freezing of water in capillary systems[J].Journal of Physical Chemistry,2002,28(4):360―367.
    [25]Tice A R.Determination of unfrozen water in frozen soil by pulsed nuclear magnetic resonance[C].Permafrost,Proceedings of the Third International Conference,1978,1:150―155.
    [26]Watanabe K,Wake T.Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J].Cold Regions Science&Technology,2009,59(1):34―41.
    [27]Kurylyk B L,Watanabe K.The mathematical representation of freezing and thawing processes in variably-saturated,non-deformable soils[J].Advances in Water Resources,2013,60(60):160―177.
    [28]Mckenzie J M,Voss C I,Siegel D I.Groundwater flow with energy transport and water-ice phase change:Numerical simulations,benchmarks,and application to freezing in peat bogs[J].Advances in Water Resources,2007,30(4):966―983.
    [29]武建军,韩天一.饱和正冻土水-热-力耦合作用的数值研究[J].工程力学,2009,26(4):246―251.Wu Jianjun,Han Tianyi.Numerical research on the coupled process of the moisture-heat-stress fields in saturated soil during freezing[J].Engineering Mechanics,2009,26(4):246―251.(in Chinese)
    [30]Bishop A W.The principle of effective stress[J].Teknisk Ukeblad,1959,106(39):859―863.
    [31]毛卫南,刘建坤.不同离散化方法在正冻土水热耦合模型中的应用[J].工程力学,2013,30(10):128―132.Mao Weinan,Liu Jiankun.Different discretization method using in coupled water and heat transport mode for soil under freezing conditions[J].Engineering Mechanics,2013,30(10):128―132.(in Chinese)
    [32]Simunek J,Huang K,van Genuchten M.The HYDRUS-ET software package for simulating the one-dimentional movement of water,heat and multiple solutes in variably-saturated media,version 1.1[M].Bratislava:Inst.Hydrology Slovak Acad.Sci,1997.
    [33]姚仰平,王琳.影响锅盖效应因素的研究[J].岩土工程学报,2018,40(8):1373―1382.Yao Yangping,Wang Lin.Research on the influence factors on the“Pot-cover effect”[J].Chinese Journal of Geotechnical Engineering,2018,40(8):1373―1382.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700