用户名: 密码: 验证码:
黄河小浪底人工混交林生长季能量平衡特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of energy balance of a mixed plantation in the Xiaolangdi area in the growing season
  • 作者:原文文 ; 同小娟 ; 张劲松 ; 孟平 ; 李俊 ; 郑宁
  • 英文作者:YUAN Wenwen;TONG Xiaojuan;ZHANG Jinsong;MENG Ping;LI Jun;ZHENG Ning;College of Forestry,Beijing Forestry University;Research Institute of Forestry,Chinese Academy of Forestry; Key Laboratory of Tree Breeding and Cultivation,State Forestry Administration;Key Laboratory of Water Cycle and Related Land Surface Processes,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;
  • 关键词:人工混交林 ; 涡度相关 ; 能量平衡 ; 波文比 ; 能量闭合
  • 英文关键词:mixed plantation;;eddy covariance;;energy balance;;bowen-ratio;;energy balance closure
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:北京林业大学林学院;中国林业科学研究院林业研究所国家林业局林木培育重点实验室;中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室;
  • 出版日期:2015-01-27 15:45
  • 出版单位:生态学报
  • 年:2015
  • 期:v.35
  • 基金:国家自然科学基金(31100322);; 国家林业局公益性行业项目(GYHY20110400904);; 北京林业大学科技创新计划项目(YX2011-19)
  • 语种:中文;
  • 页:STXB201513026
  • 页数:8
  • CN:13
  • ISSN:11-2031/Q
  • 分类号:257-264
摘要
利用涡度相关系统和小气候梯度观测系统,对黄河小浪底人工混交林2012年生长季(5—9月)各能量通量进行了连续观测,分析了该生态系统能量平衡各项的变化特征,讨论了能量闭合状况。结果表明:潜热通量、感热通量和土壤热通量均与净辐射有类似的日变化特征。各项的绝对值大小表现为净辐射>潜热通量>感热通量>土壤热通量。受日照时数的影响,5—9月能量平衡各项正值的日持续时间逐渐缩短。生长季,净辐射、感热通量和土壤热通量在6月份最大,最大值分别为418.5、231.4和12.5 MJ m-2month-1);潜热通量在7月份达到最大,最大值为320.8 MJ m-2month-1)。潜热通量、感热通量和土壤热通量占净辐射的比例分别在0.48—0.62、0.15—0.55、0.02—0.05之间。人工混交林生长季的能量分配主要以潜热通量和感热通量为主,且潜热通量为感热通量的2倍。波文比呈单峰曲线:6月最大,8月最小。黄河小浪底人工混交林生长季全天能量闭合度为79%。其中,白天闭合程度较高(81%),夜晚较低(41%)。本研究站点存在21%的能量不闭合。其原因可能与通量源区面积不匹配、忽略冠层热储存、湍流能的相位差等有关。
        Energy balance in the terrestrial ecosystem plays an important role in regional climate and water balance. By using the open-path eddy covariance and micrometeorological observation systems,turbulent energy fluxes and available energy were measured in a mixed plantation in the Xiaolangdi area in the North China during the growing season of 2012( May-September). The diurnal and monthly variations of energy balance terms were analyzed,and energy closure and Bowen ratio were discussed. The results showed that the diurnal variation of energy balance terms were similar to that of net radiation,and the variation order of energy balance terms was net radiation > latent heat flux > sensible heat flux > soil heat flux. The time of keeping positives for energy balance terms in a day became shorter from May to September as energy balance terms were influenced by sunshine hour. The maximal net radiation occurred in June with a value of 418.5 MJ m-2month-1,and the minimum in September with a value of 309.3 MJ m-2month-1. Latent heat flux peaked in July,with a value of 320.8 MJ m-2month-1. The maximal sensible heat and soil heat fluxes appeared in June,with the values of 231.4and 12.5 MJ m-2month-1,respectively. During the growing season,the proportions of latent heat,sensible heat and soil heat fluxes to net radiation ranged between 0.48 and 0.62,0.15 and 0.55,0.02 and 0.05,respectively. It is indicated that energy distribution was mainly latent heat and sensible heat fluxes in the growing season of the mixed plantation,and latent heat flux was as twice as sensible heat flux. Bowen ratio( ") can be used to indicate energy exchange between the land surface and the atmosphere. The monthly variation of Bowen ratio was obvious in the growing season,and the maximum and minimum occurred in June and August,respectively. Energy balance closure is regarded as a standard evaluating the reliability of the eddy covariance measurement at FLUXNET sites. Energy imbalance is about 10% —30% in the most FLUXNET sites. For the mixed plantation during the growing season,energy balance closure in the whole day was 79% on a half hourly basis,and with the highest in the daytime and lowest at nighttime. Energy imbalance was about 21% in the Xiaolangdi station in the growing season of 2012. Energy imbalance may result from the complex land surface,the sampling mismatch between the flux footprint and the sensors measuring other components of energy balance,ignoring heat storage of the canopy,the phase difference of turbulent energy.
引文
[1]宋长春.湿地生态系统对气候变化的响应.湿地科学,2003,1(2):122-127.
    [2]Brunsell N A,Gillies R R.Scale issues in land-atmosphere interactions:implications for remote sensing of the surface energy balance.Agricultural and Forest Meteorology,2003,117(3/4):203-221.
    [3]赵同谦,欧阳志云,贾良清,郑华.中国草地生态系统服务功能间接价值评价.生态学报,2004,24(6):1101-1110.
    [4]Pielke R A,Avissar R,Raupach M,Dolman A J,Zeng X B,Denning A S.Interactions between the atmosphere and terrestrial ecosystems:influence on weather and climate.Global Change Biology,1998,4(5):461-475.
    [5]李巧萍,丁一汇.植被覆盖变化对区域气候影响的研究进展.南京气象学院学报,2004,27(1):131-140.
    [6]Fang J Y,Chen A P,Peng C H,Zhao S Q,Ci L J.Changes in forest biomass carbon storage in China between 1949 and 1998.Science,2001,292(5525):2320-2322.
    [7]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征.北京:科学出版社,2008:1-676.
    [8]于贵瑞,方华军,伏玉玲,王秋凤.区域尺度陆地生态系统碳收支及其循环过程研究进展.生态学报,2011,31(19):5449-5459.
    [9]于贵瑞,高扬,王秋凤,刘世荣,申卫军.陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨.中国生态农业学报,2013,21(1):1-13.
    [10]Baldocchi D,Falge E,Gu L H,Olson R,Hollinger D Y,Running S W,Authoni P,Bernhofer C,Davis K,Evans R,Fuentes J,Goldstein A,Katul G,Law B,Lee X,Malhi Y,Meyers J,Munger W,Oechel W,Paw K T,Pilegaard K,Schmid H P,Valentini R,Verma S,Vesala T,Wilson K,Wofsy S.FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor and energy flux densities.Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    [11]Wilson K B,Hanson P J,Baldocchi D D.Factors controlling evaporation and energy balance partitioning beneath a deciduous forest over an annual cycle.Agricultural and Forest Meteorology,2000,102(2/3):83-103.
    [12]Schmid H P,Grimmond C S B,Cropley F,Offerle B,Su H B.Measurements of CO2and energy fluxes over a mixed hardwood forest in the midwestern United States.Agricultural and Forest Meteorology,2000,103(4):357-374.
    [13]Wu J B,Guan D X,Han S J,Shi T T,Jin C J,Pei T F,Yu G R.Energy budget above a temperate mixed forest in northeastern China.Hydrological Process,2007,21(18):2425-2434.
    [14]王春林,周国逸,王旭,周传艳,于贵瑞.鼎湖山针阔叶混交林生态系统能量平衡分析.热带气象学报,2007,23(6):643-651.
    [15]Li Z H,Zhang Y P,Wang S S,Yuan G E,Yang Y,Gao M.Evapotranspiration of a tropical rain forest in Xishuangbanna,southwest China.Hydrological Process,2010,24(17):2405-2416.
    [16]Sun G,Noormets A,Gavazzi M J,Mc Nulty S G,Chen J,Domec J C,King J S,Amatya D M,Skaggs R W.Energy and water balance of two contrasting loblolly pine plantations on the lower coastal plain of North Carolina,USA.Forest Ecology and Management,2010,259(7):1299-1310.
    [17]张新建,袁凤辉,陈妮娜,邓珺丽,于小舟,盛雪娇.长白山阔叶红松林能量平衡和蒸散.应用生态学报,2011,22(3):607-613.
    [18]陈云飞,江洪,周国模,孙成,陈健.高效经营雷竹林生态系统能量通量过程及闭合度.应用生态学报,2013,24(4):1063-1069.
    [19]Igarashi Y,Tanaka N,Tanaka K,Tanaka K,Yoshifuji N,Sato T,Tantasrin C,Suzuki M.Seasonality of water and carbon dioxide exchanges at a teak plantation in northern Thailand.Ecohydrology,2013,6(1):125-133.
    [20]孙成,江洪,陈云飞,刘玉莉,张金梦.我国亚热带毛竹林生长季能量通量过程及闭合度分析.热带亚热带植物学报,2014,22(1):38-44.
    [21]Wilson K,Goldstein A,Falge E,Aubinet M,Baldocchi D,Berbigier P,Bernhofer C,Ceulemans R,Dolman H,Field C,Grelle A,Ibrom A,Law B E,Kowalski A,Meyers T,Moncrieff J,Monson R,Oechel W,Tenhunen J,Valentini R,Verma S.Energy balance closure at FLUXNET sites.Agricultural and Forest Meteorology,2002,113(1/4):223-243.
    [22]Barr A G,Morgenstern K,Black T A,Mc Caughey J H,Nesic Z.Surface energy balance closure by the eddy covariance method above three boreal forest stands and implications for the measurement of the CO2flux.Agricultural and Forest Meteorology,2006,140(1/4):322-337.
    [23]Ma Y,Wang Y,Wu R,Hu Z,Yang K,Li M,Ma W,Zhong L,Sun F,Chen X,Zhu Z,Wang S,Ishikawa H.Recent advances on the study of atmosphere land interaction observations on the Tibetan Plateau.Hydrology and Earth System Sciences,2009,13(7):1103-1111.
    [24]Wen J,Wang L,Wei Z G.An overview of the LOess Pleteau mesa region land surface process field EXperiment series(LOPEXs).Hydrology and Earth System Sciences,2009,13:945-951.
    [25]Su Z,Timmermans W J,van der Tol C,Dost R,Bianchi R,Gómez J A,House A,Hajnsek I,Menenti M,Magliulo V,Esposito M,Haarbrink R,Bosveld F C,Rothe R,Baltink H K,Vekerdy Z,Sobrino J A,Timmermans J,van Laake P,Salama S,van der Kwast H,Claassen E,Stolk A,Jia L,Moors E,Hartogensis O,Gillespie A.EAGLE 2006-Multi-purpose,multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest.Hydrology and Earth System Sciences,2009,13(6):833-845.
    [26]Leuning R,van Gorsel E,Massman W J,Isaac P R.Reflections on the surface energy imbalance problem.Agricultural and Forest Meteorology,2012,156:65-74.
    [27]李正泉,于贵瑞,温学发,张雷明,任传友,伏玉玲.中国通量观测网络能量平衡闭合状况的评价.中国科学D辑:地球科学,2004,34(增刊Ⅱ):46-56.
    [28]田红,伍琼,童应祥.安徽省寿县农田能量平衡评价.应用气象学报,2011,22(3):356-361.
    [29]王介民,王维真,刘绍民,马明国,李新.近地层能量平衡闭合问题——综述及个例分析.地球科学发展,2009,24(7):705-712.
    [30]Falge E,Baldocchia D,Olson R,Anthoni P,Aubinet M,Bernhofer C,Burba G,Ceulemans R,Clement R,Dolman H,Granier A,Gross P,Grunwald T,Hollinger D,Jensen N,Katul G,Keronen P,Kowalski A,Lai C T,Law B,Meyers T,Moncrieff J,Moors E,Munger J,Pilegaard K,Rannik U,Rebmann J,Suyker A,Tenhunen J,Tu K,Verma S,Vesala T,Wilson K,Wofsy S.Gap filling strategies for defensible annual sums of net ecosystem exchange.Agricultural and Forest Meteorology,2001,107(1):43-69.
    [31]Sauer T J,Hatfield L,Prueger J H,Norman J M.Surface energy balance of a corn residue-covered field.Agricultural and Forest Meteorology,1998,89(3/4):155-168.
    [32]陈家宜,范邵华,赵传峰,肖雪,蔡旭辉,刘辉志.涡旋相关法测定湍流通量偏低的研究.大气科学,2006,30(3):423-432.
    [33]Heijmans M,Arp W J,Chapin F S.Carbon dioxide and water vapor exchange from understory species in boreal forest.Agricultural and Forest Meteorology,2004,123(3/4):135-147.
    [34]郑宁,张劲松,孟平,黄辉,高俊,贾长荣,任迎丰.基于闪烁仪观测低丘山地人工混交林通量印痕与源区分布.地球科学进展,2010,25(11):1175-1186.
    [35]Zhang J H,Ding Z H,Han S J,Zou C J,Zhou Y M.Turbulence regime near the forest floor of a mixed broad leaved Korean pine forest in Changbai Mountains.Journal of Forestry Research,2002,13(2):119-122.
    [36]王旭,周国逸,孙阁,张德强,闫俊华,赵辉.南亚热带针阔混交林辐射通量特征.北京林业大学学报,2006,28(5):28-34.
    [37]尹光彩,王旭,周国逸,张德强.鼎湖山针阔混交林土壤热状况研究.华南农业大学学报,2006,27(3):16-20.
    [38]王美莲,崔学明,韩鹏,周梅.大兴安岭原始林区土壤热通量变化特征的初探.内蒙古农业大学学报,2010,31(4):139-142.
    [39]Flerchinger G N,Cooley K R.A ten-year water balance of a mountainous semi-arid watershed.Journal of Hydrology,2000,237(1/2):86-99.
    [40]徐亚琪,陈妮娜,高西宁,关德新.科尔沁草甸草地生长季能量平衡特征.气象与环境学报,2012,28(3):31-36.
    [41]张燕.北京地区杨树人工林能量平衡和水量平衡[D].北京:北京林业大学,2010.
    [42]马虹,陈亚宁,李卫红.荒漠河岸柽柳(Tamarix chinensis)灌丛的能量平衡特征.中国沙漠,2014,34(1):108-117.
    [43]岳平,张强,杨金虎,李宏宇,孙旭映,杨启国,张建忠.黄土高原半干旱草地地表能量通量及闭合.生态学报,2011,31(22):6866-6876.
    [44]王昭艳.长江滩地抑螺防病林生态系统能量平衡与水汽通量研究[D].北京:中国林业科学研究院,2008.
    [45]李辉东,关德新,袁凤辉,任艳,王安志,金昌杰,吴家兵.科尔沁温带草甸能量平衡的日季变化特征.应用生态学报,2014,25(1):69-76.
    [46]Zhu Z L,Sun X M,Zhang R H.Statistical analysis and comparative study of energy balance components estimated using micrometeorological techniques during HUBEX/IOP 1998/99.Advances in Atmospheric Sciences,2003,20(2):285-291.
    [47]郭建侠,卞林根,戴永久.玉米生育期地表能量平衡的多时间尺度特征分析及不平衡原因的探索.中国科学D辑:地球科学,2008,38(9):1103-1111.
    [48]Ding R S,Kang S Z,Li F S,Zhang Y Q,Ling T,Sun Q T,Kang S Z.Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China.Agricultural Water Management,2010,98(1):87-95.
    [49]刘渡,李俊,同小娟,于强.华北平原冬小麦/夏玉米轮作田能量闭合状况分析.中国农业气象,2012,33(4):493-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700