用户名: 密码: 验证码:
生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of biochar application on microbial biomass C, N, P and stoichiometry characteristics of poplar plantation soil
  • 作者:王国兵 ; 王瑞 ; 徐瑾 ; 曹国华 ; 阮宏华
  • 英文作者:WANG Guobing;WANG Rui;XU Jin;CAO Guohua;RUAN Honghua;Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University;Dongtai Forest Farm of Jiangsu Province;
  • 关键词:生物炭 ; 杨树人工林 ; 土壤理化性质 ; 微生物生物量 ; 化学计量特征
  • 英文关键词:biochar;;poplar plantation;;soil physicochemical property;;microbial biomass;;stoichiometry characteristic
  • 中文刊名:NJLY
  • 英文刊名:Journal of Nanjing Forestry University(Natural Sciences Edition)
  • 机构:南京林业大学南方现代林业协同创新中心南京林业大学生物与环境学院;江苏省东台林场;
  • 出版日期:2018-11-06 13:07
  • 出版单位:南京林业大学学报(自然科学版)
  • 年:2019
  • 期:v.43;No.200
  • 基金:国家重点研发计划(2016YFD0600204);; 江苏省高等学校自然科学研究重大项目(18KJA220001);; 江苏高校优势学科建设工程资助项目(PAPD)
  • 语种:中文;
  • 页:NJLY201902001
  • 页数:6
  • CN:02
  • ISSN:32-1161/S
  • 分类号:5-10
摘要
【目的】揭示林分尺度下添加生物炭对土壤微生物生物量碳(SMBC)、土壤微生物生物量氮(SMBN)、土壤微生物生物量磷(SMBP)含量及其化学计量特征的影响,深入了解生物炭对杨树人工林土壤微生物群落结构与功能的影响,系统阐明生物炭调控人工林C、N、P生物地球化学循环的土壤微生物学机理,为在平原地区人工林生态系统中安全推广生物炭固碳增汇技术提供理论依据。【方法】以江苏省东台林场的杨树人工林为对象,设置生物炭添加量低(T1,40 t/hm~2)、中(T2,80 t/hm~2)、高(T3,120 t/hm~2)3种处理及对照(不添加CK),测定SMBC、SMBN、SMBP含量及其化学计量特征(土壤微生物生物量碳、氮、磷含量比,即m(SMBC)/m(SMBN)、m(SMBC)/m(SMBP)、m(SMBN)/m(SMBP),文后简写为SMBC/SMBN、SMBC/SMBP、SMBN/SMBP)在不同处理间的差异,及其与土壤理化性质之间的关系。【结果】①与对照样地相比,3种生物炭添加处理均提高了SMBC、SMBN和SMBP含量。T1、T2、T3处理样地SMBC含量分别为对照样地的1.08、1.15、1.19倍;SMBN含量分别为对照样地的1.12、1.24、1.34倍;SMBP含量分别为对照样地的1.11、1.26、1.41倍;②T1处理样地的SMBC/SMBN、SMBC/SMBP、SMBN/SMBP分别为15.7、85.0、5.4,T2处理样地的分别为15.1、78.6、5.2,T3处理样地的分别为14.3、73.3、5.1。与对照相比,3种生物炭添加处理均显著降低了SMBC/SMBN和SMBC/SMBP,且不同处理间差异显著(P<0.05),但仅T2、T3处理显著降低了SMBN/SMBP(P<0.05);③SMBC、SMBN、SMBP含量均具有显著的季节变异,其中在植物休眠季节(2014年12月及2015年3月),SMBC、SMBN及SMBP的含量均维持在较高水平,而在植物生长的旺盛季节(2015年7月及2015年10月),其含量下降至较低水平,但SMBC/SMBN、SMBC/SMBP、SMBN/SMBP的季节变化与此完全相反;④添加生物炭提高了土壤可溶性有机碳、硝态氮、速效磷、全氮和总有机碳含量,增加了土壤pH和含水率,但是降低了土壤密度和铵态氮含量;⑤相关性分析表明,SMBC含量与土壤可溶性有机碳(DOC)、pH、含水率(SMC)、硝态氮(NO~-_3-N)和速效磷(AP)呈极显著正相关关系(P<0.01),与铵态氮(NH~+_4-N)呈极显著负相关关系(P<0.01),而与土壤密度、全氮(TN)和总有机碳(TOC)相关性不显著(P≥0.05);SMBN与SMBP的含量表现较为一致,均与DOC、pH、SMC、NO~-_3-N、AP、TN呈极显著正相关关系(P<0.01),与NH~+_4-N呈极显著负相关关系(P<0.01),而与土壤密度和TOC相关性不显著(P≥0.05)。【结论】添加生物炭能够显著提升SMBC、SMBN、SMBP含量,并有效降低SMBC/SMBN、SMBC/SMBP和SMBN/SMBP,有利于促进土壤微生物对N、P养分的固持与周转,进而改善土壤对N、P养分的供应。研究还发现,研究区杨树人工林生长可能存在N、P养分限制现象。
        【Objective】This study aimed to reveal the effects of biochar application on soil microbial biomass C, N and P and its stoichiometry characteristics under a poplar plantation. In addition, we aimed to thoroughly understand the effects of biochar application on the structure and function of the soil microbial community and to systematically elucidate the soil microbiological mechanism behind biochar regulation of the biogeochemical cycle of C, N and P in poplar plantations. Ultimately, results of this study will provide important information for safely using biochar application as a carbon sequestration technology in plantation ecosystems. 【Method】Soil microbial biomass C, N, P(i.e. SMBC, SMBN and SMBP) and physicochemical properties(such as soil total organic carbon, total nitrogen, soluble organic carbon, nitrate nitrogen, ammonium nitrogen, available phosphorus, soil density, pH and moisture content) were examined in a poplar plantation in the Dongtai Forest Farm of Jiangsu Province. Four different treatments were used in this study: low biochar addition(T1, 40 t/hm~2), middle biochar addition(T2, 80 t/hm~2), high biochar addition(T3, 120 t/hm~2), and no biochar addition(Control). 【Result】The SMBC, SMBN and SMBP all increased in the three biochar addition treatments relative to the control. SMBC increased by 687.2, 727.0 and 752.6 mg/kg in T1, T2 and T3 treatments, respectively, which was 1.08, 1.15 and 1.19 times higher than that in the control. SMBN increased by 44.1, 48.7 and 52.9 mg/kg in T1, T2 and T3 treatments, respectively, which was 1.12, 1.24, and 1.34 times greater than that in the control. SMBP increased by 8.2, 9.3 and 10.4 mg/kg in T1, T2 and T3 treatments, respectively, which was 1.11, 1.26 and 1.41 times greater than that in the control. SMBC/SMBN, SMBC/SMBP and SMBN/SMBP ratios in T1 were 15.7, 85.0 and 5.4, respectively. SMBC/SMBN, SMBC/SMBP and SMBN/SMBP ratios in T2 were 15.1, 78.6 and 5.2, respectively. SMBC/SMBN, SMBC/SMBP and SMBN/SMBP ratios in T3 were 14.3, 73.3 and 5.1, respectively. Both SMBC/SMBN and SMBC/SMBP ratios were significantly reduced in the three biochar addition treatments and significant differences were observed among treatments(P<0.05), but SMBN/SMBP ratio was only significantly reduced in T2 and T3(P<0.05). SMBC, SMBN, SMBP showed significant seasonal variation. C, N and P levels were higher in plant dormancy season(December 2014 and March 2015) and lower in the vigorous growing season(July 2015 and October 2015). However, seasonal variation of SMBC/SMBN, SMBC/SMBP and SMBN/SMBP ratios showed opposite trends. Biochar addition increased the contents of soluble organic carbon(DOC), nitrate nitrogen(NO■-N), available phosphorus(AP), total nitrogen(TN), and total organic carbon(TOC). Biochar addition also increased soil pH and soil moisture content(SMC) and reduced soil density and ammonium nitrogen(NH■-N). Correlation analysis showed that SMBC had a highly significant positive correlation with soil DOC, pH, SMC, NO■-N and AP, while it had a highly significant negative correlation with NH■-N(P<0.01). No significant correlation was observed for soil density, TN or TOC(P≥0.05). SMBN and SMBP had highly significant positive correlations with DOC, pH, SMC, NO■-N, AP and TN and highly significant negative correlations with NH■-N(P<0.01). No significant correlations were observed for soil density or TOC(P≥0.05). 【Conclusion】Our results provide preliminary evidence that biochar application is useful for promoting soil N and P and supporting poplar growth due to the increase in SMBC, SMBN, SMBP and its optimized stoichiometry characteristics. Growth may be limited by N and P in poplar plantations in this region.
引文
[1] LEHMANN J,RILLIG M C,THIES J,et al.Biochar effects on soil biota:a review[J].Soil Biology and Biochemistry,2011,43(9):1812-1836.DOI:10.1016/j.soilbio.2011.04.022.
    [2] MARRIS E.Putting the carbon back:black is the new green[J].Nature,2006,442(7103):624-626.DOI:10.1038/442624a.
    [3] LEHMANN J.A handful of carbon[J].Nature,2007,447(7141):143-144.DOI:10.1038/447143a.
    [4] LEHMANN J,RONDON M.Biochar soil management on highly weathered soils in the humid tropics[C]//UPHOFF N.Biological approaches to sustainable soil systems.Boca Raton:CRC Press,2006:517-530.DOI:10.1201/9781420017113.ch36.
    [5] SOHI S,LOPEZ-CAPEL E,KRULL E,et al.Biochar,climate change and soil:a review to guide future research[R].CSIRO Land and Water Science Report,2009.DOI:10.1139/Z03-132.
    [6] BAMMINGER C,POLL C,MARHAN S.Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application[J].Global Change Biology,2018,24(1):e318-e334.DOI:10.1111/gcb.13871.
    [7] TAN Z,LIN C S K,JI X,et al.Returning biochar to fields:a review[J].Applied Soil Ecology,2017,116:1-11.DOI:10.1016/j.apsoil.2017.03.017.
    [8] JONES D L,ROUSK J,EDWARDS-JONES G,et al.Biochar-mediated changes in soil quality and plant growth in a three year field trial[J].Soil Biology and Biochemistry,2012,45:113-124.DOI:10.1016/j.soilbio.2011.10.012.
    [9] LAIRD D A,FLEMING P,DAVIS D D.Impact of biochar amendments on the quality of a typical midwestern agricultural soil[J].Geoderma,2010,158(3):443-449.DOI:10.1016/j.geoderma.2010.05.013.
    [10] LIANG B,LEHMANN J,SOLOMON D,et al.Black carbon increases cation exchange capacity in soils[J].Soil Science Society of America Journal,2006,70(5):1719-1730.DOI:10.2136/sssaj2005.0383.
    [11] CASTALDI S,RIONDINO M,BARONTI S,et al.Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes[J].Chemosphere,2011,85(9):1464-1471.DOI:10.1016/j.chemosphere.2011.08.031.
    [12] JINDO K,SáNCHEZ-MONEDERO M A,HERNáNDEZ T,et al.Biochar influences the microbial community structure during manure composting with agricultural wastes[J].Science of the Total Environment,2012,416:476-481.DOI:10.1016/j.scitotenv.2011.12.009.
    [13] PIETIK?INEN J,KIIKKIL? O,FRITZE H,et al.Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J].Oikos,2000,89:231-242.DOI:10.1034/j.1600-0706.2000.890203.x.
    [14] ATKINSON C J,FITZGERALD J D,HIPPS N A.Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review[J].Plant and Soil,2010,337(1):1-18.DOI:10.1007/s11104-010-0464-5.
    [15] BROOKES P C,LANDMAN A,PRUDEN G,et al.Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil[J].Soil Biology and Biochemistry,1985,17(6):837-842.DOI:10.1016/0038-0717(85)90144-0.
    [16] VANCE E D,BROOKS P C,JENKINSON D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987,19(6):703-707.DOI:10.1016/0038-0717(87)90052-6.
    [17] 吴金水,肖和艾,陈佳秋,等.旱地土壤微生物磷测定方法研究[J].土壤学报,2003,40(1):70-78.DOI:10.3321/j.issn:0564-3929.2003.01.010.WU J S,XIAO H A,CHEN J Q,et al.Measurement of microbial biomass-P in upland soils in China[J].Acta Pedologica Sinica,2003,40(1):70-78.
    [18] HE D M,RUAN H H.Long term effect of land reclamation from lake on chemical composition of soil organic matter and its mineralization[J].PLoS ONE,2014,9(6):e99251.DOI:10.1371/journal.pone.0099251.
    [19] 陈书信,王国兵,阮宏华,等.苏北沿海不同土地利用方式冬季土壤氮矿化速率比较[J].南京林业大学学报(自然科学版),2014,38(1):41-46.DOI:10.3969/j.issn.1000-2006.2014.01.08.CHEN S X,WANG G B,RUAN H H,et al.Effect of different land uses on soil nitrogen mineralization in a coastal area of northern Jiangsu Province,China,in winter[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2014,38(1):41-46.
    [20] 倪雪,张焕朝,杨秀莲,等.覆盖物对土壤性质及微生物生物量碳氮的影响[J].南京林业大学学报(自然科学版),2017,41(1):89-95.DOI:10.3969/j.issn.1000-2006.2017.01.014.NI X,ZHANG H C,YANG X L,et al.Effects of mulching on soil property and microbial biomass carbon and nitrogen[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2017,41(1):89-95.
    [21] SOHI S P,KRULL E,LOPEZ-CAPEL E.A review of biochar and its use and function in soil[J].Advances in Agronomy,2010,105:47-82.DOI:10.1016/S0065-2113(10)05002-9.
    [22] KOLB S E,FERMANICH K J,DORNBUSH M E,et al.Effect of charcoal quantity on microbial biomass and activity in temperate soils[J].Soil Science Society of American Journal,2009,73(4):1173-1181.DOI:10.2136/sssaj2008.0232.
    [23] WARDLE D A,NILSSON M C,ZACKRISSON O,et al.Fire-derived charcoal causes loss of forest humus[J].Science,2008,320(5876):629.DOI:10.1126/science.1154960.
    [24] LIANG B,LEHMANN J,SOHI S P,et al.Black carbon affects the cycling of non-black carbon in soil[J].Organic Geochemistry,2010,41(2):206-213.DOI:10.1016/j.orggeochem.2009.09.007.
    [25] ANDERS E,WATZINGER A,REMPT F,et al.Biochar affects the structure rather than the total biomass of microbial communities in temperate soils[J].Agricultural & Food Science,2013,22(4):404-423.DOI:10.23986/afsci.8095.
    [26 ]ZHANG Q Z,DIJKSTRA F A,LIU X R,et al.Effects of biochar on soil microbial biomass after four years of consecutive application in the north China Plain[J].PLoS ONE,2014,9(7):e102062.DOI:10.1371/journal.pone.0102062.
    [27] ZHANG H,VORONEY R P,PRICE G W.Effects of biochar amendments on soil microbial biomass and activity[J].Journal of Environmental Quality,2014,43(6):2104-2114.DOI:10.2134/jeq2014.03.0132.
    [28] O’NEILL B,GROSSMAN J,TSAI M T,et al.Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification[J].Microbial Ecology,2009,58(1):23-35.DOI:10.1007/s00248-009-9515-y.
    [29] CHAN K Y,VAN ZWIETEN L,MESZAROS I,et al.Agronomic values of greenwaste biochar as a soil amendment[J].Australian Journal of Soil Research,2007,45(8):629-634.DOI:10.1071/sr07109.
    [30] RONDON M A,LEHMANN J,RAMíREZ J,et al.Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions[J].Biology and Fertility of Soils,2007,43(6):699-708.DOI:10.1007/s00374-006-0152-z.
    [31] DELUCA T H,MACKENZIE M D,GUNDALE M J,et al.Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J].Soil Science Society of American Journal,2006,70(2):448-453.DOI:10.2136/sssaj2005.0096.
    [32] 钟晓晓,王涛,原文丽,等.生物炭的制备、改性及其环境效应研究进展[J].湖南师范大学自然科学学报,2017,40(5):44-50.DOI:10.7612/j.issn.1000-2537.2017.05.007.ZHONG X X,WANG T,YUAN W L,et al.Progress of the preparation,modification and environmental effects of biochar[J].Journal of Natural Science of Hunan Normal University,2017,40(5):44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700