用户名: 密码: 验证码:
典型人工纳米材料的水环境行为研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of water environment behavior of typical engineered nanomaterials
  • 作者:侯俊 ; 次瀚林 ; 吕博文 ; 苗令占 ; 刘智临
  • 英文作者:HOU Jun;CI Hanlin;LYU Bowen;MIAO Lingzhan;LIU Zhilin;Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes,Ministry of Education,Hohai University;College of Environment,Hohai University;
  • 关键词:人工纳米材料 ; 水环境 ; 环境行为 ; 综述
  • 英文关键词:engineered nanomaterials;;aquatic environment;;environmental behavior;;research progress
  • 中文刊名:SZYB
  • 英文刊名:Water Resources Protection
  • 机构:河海大学浅水湖泊综合治理与资源开发教育部重点实验室;河海大学环境学院;
  • 出版日期:2017-11-20
  • 出版单位:水资源保护
  • 年:2017
  • 期:v.33
  • 基金:国家自然科学基金(51479047);; 江苏省杰出青年基金(BK20160038)
  • 语种:中文;
  • 页:SZYB201706001
  • 页数:9
  • CN:06
  • ISSN:32-1356/TV
  • 分类号:5-12+23
摘要
概述典型人工纳米材料释放到水环境中可能发生的团聚、沉降、溶解等行为及其影响因素(包括pH值、离子强度、天然有机物、无机胶体、水动力条件等)。这些水环境条件通过静电作用、位阻效应、桥联作用与溶解离子络合作用等影响纳米颗粒的行为。分析当前研究的不足,认为应开展自然环境条件下的纳米材料行为研究,例如更低浓度的纳米材料环境行为、纳米材料与天然胶体之间的相互作用等,为进一步研究和预测人工纳米材料在水环境中的归趋提供理论依据。
        This paper has reviewed the aggregation,sedimentation,dissolution and other behaviors and influence factors( pH,ionic strength,natural organic matter,inorganic colloid and hydrodynamic force) of typical ENMs that are likely to occur in aquatic environment. These water environment conditions affect the behaviors of nanoparticles by means of electrostatic interaction,steric hindrance,bridging and complexation with dissolved ions mechanism. In view of current insufficient research in this regard,future studies are proposed to focus on nanomaterials behaviors under natural environmental conditions,such as lower concentration of nanomaterials and the interactions between nanomaterials and natural colloids in order to provide a theoretical basis for further research and prediction of the fates of ENMs in water.
引文
[1]DUNPHY K A,FINNEGAN M P,BANFIELD J F.Influence of surface potential on aggregation and transport of titania nanoparticles[J].Environmental Science&Technology,2006,40(24):7688-7693.
    [2]李轶,殷亚远,王超,等.纳米二氧化钛和铜对大型溞的联合毒性[J].河海大学学报(自然科学版),2016,44(2):95-100.(LI Yi,YIN Yayuan,WANG Chao,et al.Joint toxicity of titanium dioxide nanoparticles and copper on Daphnia magna[J].Journal of Hohai University(Natural Sciences),2016,44(2):95-100.(in Chinese))
    [3]夏俊,陆光华,赵海洲,等.人工纳米材料在流动水域中的环境行为与生物效应[J].水资源保护,2013,29(6):1-5.(XIA Jun,LU Guanghua,ZHAO Haizhou,et al.Environmental behaviors and biological effects of manufactured nanomaterials in flowing waters[J].Water Resources Protection,2013,29(6):1-5.(in Chinese))
    [4]NOWACK B,BUCHELI T D.Occurrence,behavior and effects of nanoparticles in the environment[J].Environmental Pollution,2007,150(1):5-22.
    [5]GOTTSCHALK F,SONDERER T,SCHOLZ R W,et al.Modeled environmental concentrations of engineered nanomaterials(Ti O2,Zn O,Ag,CNT,fullerenes)for different regions[J].Environmental Science&Technology,2009,43(24):9216-9222.
    [6]KELLER A A,MCFERRAN S,LAZAREVA A,et al.Global life cycle releases of engineered nanomaterials[J].Journal of Nanoparticle Research,2013,15(6):1692.
    [7]MEESTERS J A J,QUIK J T K,KOELMANS A A,et al.Multimedia environmental fate and speciation of engineered nanoparticles:a probabilistic modeling approach[J].Environmental Science:Nano,2016,3(4):715-727.
    [8]CHAE Y J,PHAM C H,LEE J,et al.Evaluation of the toxic impact of silver nanoparticles on Japanese medaka(Oryzias latipes)[J].Aquatic Toxicology,2009,94(4):320-327.
    [9]SCOWN T M,VAN AERLE R,TYLER C R.Review:do engineered nanoparticles pose a significant threat to the aquatic environment?[J].Critical Reviews in Toxicology,2010,40(7):653-670.
    [10]LI X,LENHART J J,WALKER H W.Aggregation kinetics and dissolution of coated silver nanoparticles[J].Langmuir,2011,28(2):1095-1104.
    [11]GAISER B K,FERNANDES T F,JEPSON M A,et al.Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles[J].Environmental Toxicology and Chemistry,2012,31(1):144-154.
    [12]AIKEN G R,HSU-KIM H,RYAN J N.Influence of dissolved organic matter on the environmental fate of metals,nanoparticles,and colloids[J].Environmental Science and Technology-Columbus,2011,45(8):31-96.
    [13]CHANG Y N,ZHANG M,Xia L,et al.The toxic effects and mechanisms of Cu O and Zn O nanoparticles[J].Materials,2012,5(12):2850-2871.
    [14]YANG Y,ZHANG C,HU Z.Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion[J].Environmental Science:Processes&Impacts,2013,15(1):39-48.
    [15]LV X,TAO J,CHEN B,et al.Roles of temperature and flow velocity on the mobility of nano-sized titanium dioxide in natural waters[J].Science of the Total Environment,2016,565:849-856.
    [16]APPLEROT G,LELLOUCHE J,LIPOVSKY A,et al.Understanding the antibacterial mechanism of Cu O nanoparticles:revealing the route of induced oxidative stress[J].Small,2012,8(21):3326-3337.
    [17]KLAINE S J,ALVAREZ P J J,BATLEY G E,et al.Nanomaterials in the environment:behavior,fate,bioavailability,and effects[J].Environmental Toxicology and Chemistry,2008,27(9):1825-1851.
    [18]VERWEY E J W,OVERBEEK J T G.Theory of the stability of lyophobic colloids[M].New York:Courier Corporation,1999.
    [19]ZHANG Y,CHEN Y,WESTERHOFF P,et al.Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J].Water Research,2009,43(17):4249-4257.
    [20]TSO C,ZHUNG C,SHIH Y,et al.Stability of metal oxide nanoparticles in aqueous solutions[J].Water Science and Technology,2010,61(1):127-133.
    [21]LI X,LENHART J J.Aggregation and dissolution of silver nanoparticles in natural surface water[J].Environmental Science&Technology,2012,46(10):5378-5386.
    [22]PRAETORIUS A,SCHERINGER M,HUNGERBHLER K.Development of environmental fate models for engineered nanoparticles:a case study of Ti O2nanoparticles in the Rhine River[J].Environmental Science&Technology,2012,46(12):6705-6713.
    [23]HUYNH K A,MCCAFFERY J M,CHEN K L.Heteroaggregation of multiwalled carbon nanotubes and hematite nanoparticles:rates and mechanisms[J].Environmental Science&Technology,2012,46(11):5912-5920.
    [24]ZHU M,WANG H,KELLER A A,et al.The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different p H and ionic strengths[J].Science of the Total Environment,2014,487:375-380.
    [25]LV B,WANG C,HOU J,et al.Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide(Ce O2)[J].Journal of Nanoparticle Research,2016,18(7):1-12.
    [26]QUIK J T K,STUART M C,WOUTERSE M,et al.Natural colloids are the dominant factor in the sedimentation of nanoparticles[J].Environmental Toxicology and Chemistry,2012,31(5):1019-1022.
    [27]QUIK J T K,VAN DE MEENT D,Koelmans A A.Simplifying modeling of nanoparticle aggregation-sedimentation behavior in environmental systems:a theoretical analysis[J].Water Research,2014,62:193-201.
    [28]QUIK J T K,VELZEBOER I,WOUTERSE M,et al.Heteroaggregation and sedimentation rates for nanomaterials in natural waters[J].Water Research,2014,48:269-279.
    [29]BONDARENKO O,IVASK A,KKINEN A,et al.Subtoxic effects of Cu O nanoparticles on bacteria:kinetics,role of Cu ions and possible mechanisms of action[J].Environmental Pollution,2012,169:81-89.
    [30]MAJEDI S M,KELLY B C,LEE H K.Role of combinatorial environmental factors in the behavior and fate of Zn O nanoparticles in aqueous systems:a multiparametric analysis[J].Journal of Hazardous Materials,2014,264:370-379.
    [31]BIAN S W,MUDUNKOTUWA I A,RUPASINGHE T,et al.Aggregation and dissolution of 4 nm Zn O nanoparticles in aqueous environments:influence of p H,ionic strength,size,and adsorption of humic acid[J].Langmuir,2011,27(10):6059-6068.
    [32]LIU J,HURT R H.Ion release kinetics and particle persistence in aqueous nano-silver colloids[J].Environmental Science&Technology,2010,44(6):2169-2175.
    [33]ZHANG W,YAO Y,SULLIVAN N,et al.Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics[J].Environmental Science&Technology,2011,45(10):4422-4428.
    [34]DOBIAS J,BERNIER-LATMANI R.Silver release from silver nanoparticles in natural waters[J].Environmental Science&Technology,2013,47(9):4140-4146.
    [35]MIAO L,WANG C,HOU J,et al.Enhanced stability and dissolution of Cu O nanoparticles by extracellular polymeric substances in aqueous environment[J].Journal of Nanoparticle Research,2015,17(10):404.
    [36]HE D,JONES A M,GARG S,et al.Silver nanoparticlereactive oxygen species interactions:application of a charging-discharging model[J].The Journal of Physical Chemistry C,2011,115(13):5461-5468.
    [37]ZHANG C,HU Z,DENG B.Silver nanoparticles in aquatic environments:physiochemical behavior and antimicrobial mechanisms[J].Water Research,2016,88:403-427.
    [38]KITTLER S,GREULICH C,DIENDORF J,et al.Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions[J].Chemistry of Materials,2010,22(16):4548-4554.
    [39]PHILIPPE A,SCHAUMANN G E.Interactions of dissolved organic matter with natural and engineered inorganic colloids:a review[J].Environmental Science&Technology,2014,48(16):8946-8962.
    [40]ZHANG Y,CHEN Y,WESTERHOFF P,et al.Stability of commercial metal oxide nanoparticles in water[J].Water Research,2008,42(8):2204-2212.
    [41]HSU J P,NACU A.An experimental study on the rheological properties of aqueous ceria dispersions[J].Journal of Colloid and Interface Science,2004,274(1):277-284.
    [42]VALE G,FRANCO C,DINIZ M S,et al.Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea-the role of Ti O2nanoparticles[J].Ecotoxicology and Environmental Safety,2014,109:161-168.
    [43]REDDY K J,MCDONALD K J,KING H.A novel arsenic removal process for water using cupric oxide nanoparticles[J].Journal of Colloid and Interface Science,2013,397:96-102.
    [44]PRAETORIUS A,LABILLE J,SCHERINGER M,et al.Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions[J].Environmental Science&Technology,2014,48(18):10690-10698.
    [45]ZHANG H,CHEN B,BANFIELD J F.Particle size and p H effects on nanoparticle dissolution[J].The Journal of Physical Chemistry C,2010,114(35):14876-14884.
    [46]SON J,VAVRA J,FORBES V E.Effects of water quality parameters on agglomeration and dissolution of copper oxide nanoparticles(Cu O-NPs)using a central composite circumscribed design[J].Science of the Total Environment,2015,521:183-190.
    [47]CHEN K L,ELIMELECH M.Aggregation and deposition kinetics of fullerene(C60)nanoparticles[J].Langmuir,2006,22(26):10994-11001.
    [48]BAALOUSHA M.Aggregation and disaggregation of iron oxide nanoparticles:influence of particle concentration,p H and natural organic matter[J].Science of the Total Environment,2009,407(6):2093-2101.
    [49]LIU X,WAZNE M,HAN Y,et al.Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes[J].Journal of Colloid and Interface Science,2010,348(1):101-107.
    [50]BAALOUSHA M,NUR Y,RMER I,et al.Effect of monovalent and divalent cations,anions and fulvic acid on aggregation of citrate-coated silver nanoparticles[J].Science of the Total Environment,2013,454:119-131.
    [51]CHAMBERS B A,AFROOZ A N,BAE S,et al.Effects of chloride and ionic strength on physical morphology,dissolution,and bacterial toxicity of silver nanoparticles[J].Environmental Science&Technology,2013,48(1):761-769.
    [52]HUYNH K A,CHEN K L.Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions[J].Environmental Science&Technology,2011,45(13):5564-5571.
    [53]MIAO L,WANG C,HOU J,et al.Effect of alginate on the aggregation kinetics of copper oxide nanoparticles(Cu O NPs):bridging interaction and hetero-aggregation induced by Ca2+[J].Environmental Science and Pollution Research,2016,23(12):11611-11619.
    [54]HYUNG H,KIM J H.Natural organic matter(NOM)adsorption to multi-walled carbon nanotubes:effect of NOM characteristics and water quality parameters[J].Environmental Science&Technology,2008,42(12):4416-4421.
    [55]GEBAUER J S,MALISSEK M,SIMON S,et al.Impact of the nanoparticle-protein corona on colloidal stability and protein structure[J].Langmuir,2012,28(25):9673-9679.
    [56]SALEH N B,PFEFFERLE L D,ELIMELECH M.Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes[J].Environmental Science&Technology,2010,44(7):2412-2418.
    [57]LOOSLI F,LE COUSTUMER P,STOLL S.Effect of electrolyte valency,alginate concentration and p H on engineered Ti O2nanoparticle stability in aqueous solution[J].Science of the Total Environment,2015,535:28-34.
    [58]ORIEKHOVA O,STOLL S.Effects of p H and fulvic acids concentration on the stability of fulvic acids-cerium(Ⅳ)oxide nanoparticle complexes[J].Chemosphere,2016,144:131-137.
    [59]GIMBERT L J,HAMON R E,CASEY P S,et al.Partitioning and stability of engineered Zn O nanoparticles in soil suspensions using flow field-flow fractionation[J].Environmental Chemistry,2007,4(1):8-10.
    [60]VAN KOETSEM F,GEREMEW T T,WALLAERT E,et al.Fate of engineered nanomaterials in surface water:factors affecting interactions of Ag and Ce O2nanoparticles with(re)suspended sediments[J].Ecological Engineering,2015,80:140-150.
    [61]RAKOWSKA M I,KUPRYIANCHYK D,HARMSEN J,et al.In situ remediation of contaminated sediments using carbonaceous materials[J].Environmental Toxicology and Chemistry,2012,31(4):693-704.
    [62]TOMBCZ E,SZEKERES M.Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite[J].Applied Clay Science,2006,34(1):105-124.
    [63]ZHOU D,ABDEL-FATTAH A I,KELLER A A.Clay particles destabilize engineered nanoparticles in aqueous environments[J].Environmental Science&Technology,2012,46(14):7520-7526.
    [64]WANG H,DONG Y,ZHU M,et al.Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments[J].Water Research,2015,80:130-138.
    [65]LIU J,HWANG Y S,LENHART J J.Heteroaggregation of bare silver nanoparticles with clay minerals[J].Environmental Science:Nano,2015,2(5):528-540.
    [66]ZHAO J,LIU F,WANG Z,et al.Heteroaggregation of graphene oxide with minerals in aqueous phase[J].Environmental Science&Technology,2015,49(5):2849-2857.
    [67]SOTIRELIS N P,CHRYSIKOPOULOS C V.Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids[J].Science of the Total Environment,2017,579:736-744.
    [68]YIN W Z,YANG X S,ZHOU D P,et al.Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate[J].Transactions of Nonferrous Metals Society of China,2011,21(3):652-664.
    [69]CHEKLI L,ZHAO Y X,TIJING L D,et al.Aggregation behaviour of engineered nanoparticles in natural waters:characterising aggregate structure using on-line laser light scattering[J].Journal of Hazardous Materials,2015,284:190-200.
    [70]TELEKI A,WENGELER R,WENGELER L,et al.Distinguishing between aggregates and agglomerates of flame-made Ti O2by high-pressure dispersion[J].Powder Technology,2008,181(3):292-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700