用户名: 密码: 验证码:
玉米产量相关性状定位和Meta-QTL整合
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:QTL Mapping and Meta-QTL Analysis for Grain Yield Related Traits in Maize(Zea mays L.)
  • 作者:马娟 ; 王浩 ; 王利锋 ; 曹言勇 ; 李晶晶 ; Thomas ; Lubberstedt ; 王丽艳 ; 李会勇
  • 英文作者:MA Juan;WANG Hao;WANG Li-feng;CAO Yan-yong;LI Jing-jing;THOMAS Lubberstedt;WANG Li-yan;LI Hui-yong;Institute of Cereal Crops,Henan Academy of Agricultural Sciences;Department of Agronomy,Iowa State University;
  • 关键词:玉米 ; 产量 ; 56K ; SNP芯片 ; Meta-QTL分析
  • 英文关键词:maize;;grain yield;;56K SNP chip;;Meta-QTL analysis
  • 中文刊名:ZWYC
  • 英文刊名:Journal of Plant Genetic Resources
  • 机构:河南省农业科学院粮食作物研究所;美国爱荷华州立大学农学院;
  • 出版日期:2018-09-14 10:55
  • 出版单位:植物遗传资源学报
  • 年:2019
  • 期:v.20
  • 基金:国家重点研发计划(2016YFD0100103-10-2);; 河南省重大科技专项(161100110500)~~
  • 语种:中文;
  • 页:ZWYC201901005
  • 页数:11
  • CN:01
  • ISSN:11-4996/S
  • 分类号:41-51
摘要
以自交系PHB47为轮回亲本,美国GEM种质YUCATAN TOL389 ICA为供体,构建包含115个株系的BC3F4群体为材料,利用玉米56K SNP芯片鉴定基因型,采用基于似然比测验的逐步回归分析法,对产量相关性状进行QTL定位分析。共获得7个穗粒数、穗长、粒宽、株高和穗位高加性QTL,解释3.72%~21.90%的表型变异;5个控制单穗重、百粒重、穗长和株高的显性QTL,表型变异解释率为8.40%~21.90%。同时,利用Meta-QTL分析方法,对2005-2018年已发表的不同环境条件下产量相关性状QTL的定位结果进行了整合分析。在正常田间管理条件和营养胁迫条件分别获得37个和16个MQTL。本研究中穗位高加性位点AX-116871591位于MQTL16区段内,并且与MQTLNP7位置相近,该区段内包含生长素/脱落酸转录因子IAA5。穗粒数加性位点AX-86281411,粒宽加性位点AX-86267702和株高显性位点AX-116875920均位于MQTLNP9区段内,该区段内包含NAC转录因子NACTF36。NAC转录因子、MYB转录因子和SOD基因均存在于两个环境条件MQTL区段内。
        A backcrossing population BC3F4(containing 115 individuals)derived from inbred line PHB47(recurrent parent)and America GEM germplasm YUCATAN TOL389 ICA(donor parent)was used to identify QTL for grain yield components and seed size by step-wise regression analysis based on likelihood ratio test.The genotyping dataset was generated using Maize 56 K SNP chips.A total of seven additive QTLs were detected for kernel number per ear(KNE),ear length,kernel width(KW),plant height(PH)and ear height(EH),and phenotypic variance explanation(PVE)ranged from 3.72% to 21.90%.Five dominance QTLs were detected for ear weight,Hundred-KW,EH and PH,and the PVE ranged from 8.40% to 21.90%.By Meta-QTL analysis in the published papers from 2005 to 2018 under different conditions,37 and 16 Meta-QTL(MQTL)for grain yield related traits were estimated under normal agricultural management and nutrition stress condition,respectively.EH additive locus AX-116871591 was located at MQTL16,close to MQTLNP7 where Aux/IAA-transcription factor 5 was detected.KNE additive locus AX-86281411,KW additive locus AX-86267702 and PH dominance locus AX-86281411 were located at MQTLNP9 where NAC transcription factor 36 was detected.Several NAC and MYB transcription factor,and SOD gene were found in MQTL under both conditions.
引文
[1]Hirsch C N,Flint-Garcia S A,Beissinger T M,Eichten S R,Deshpande S,Barry K,McMullen M D,Holland J B,Buckler E S,Springer N,Buell C R,de Leon N,Kaeppler S M.Insights into the effects of long-term artificial selection on seed size in maize.Genetics,2014,198(1):409-421
    [2]Yan J B,Tang H,Huang Y,Zheng Y Q,Li J S.Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid.Euphytica,2006,149(1-2):121-131
    [3]Ma X Q,Tang J H,Teng W T,Yan J B,Meng Y J,Li J S.Epistatic interaction is an important genetic basis of grain yield and its components in maize.Molecular Breeding,2007,20(1):41-51
    [4]江培顺,张焕欣,吕香玲,郝转芳,李博,李明顺,王宏伟,慈晓科,张世煌,李新海,史振声,翁建峰.玉米产量相关性状Meta-QTL及候选基因分析.作物学报,2013,39(6):969-978Jiang P S,Zhang H X,Lv X L,Hao Z F,Li B,Li S M,Wang H W,Ci X K,Zhang S H,Shi Z S,Weng J F.Analysis of metaQTL and candidate genes related to yield components in maize.Acta Agronomica Sinica,2013,39(6):969-978
    [5]栗文娟,刘志斋,石云素,宋燕春,王天宇,徐辰武,黎裕.基于元分析和生物信息学分析的玉米抗旱相关性状QTL一致性区间定位.作物学报,2010,36(9):1457-1467Li WJ,LiuZZ,Shi YS,Song YC,Wang T Y,XuC W,Li Y.Detection of consensus genomic region of QTLs relevant todrought-toleranceinmaizebyQTLmeta-analysisand bioinformaticsapproach.Acta AgronomicaSinica,2010,36(9):1457-1467
    [6]刘秀林,苗丽丽,薛永国,高明杰,蒲国锋,苏俊.玉米磷素相关根系性状Meta-QTL及候选基因发掘.玉米科学,2016,24(6):1-6Liu X L,Miao L L,Cai Y G,Gao M J,Pu G F,Su J.Analysis of meta-QTL and candidate genes related to phosphorus related root traits in maize.Journal of Maize Sciences,2016,24(6):1-6
    [7]Cai L,Li K,Yang X,Li J.Identification of large-effect QTL for kernel row number has potential for maize yield improvement.Molecular Breeding,2014,34(3):1087-1096
    [8]Choe E,Rocheford T R.Genetic and QTL analysis of pericarp thicknessandeararchitecturetraitsofKoreanwaxycorn germplasm.Euphytica,2012,183(2):243-260
    [9]Guo J,Chen Z,Liu Z,Wang B,Song W,Li W,Chen J,Dai J,Lai J.Identification of genetic factors affecting plant density responsethroughQTLmappingofyieldcomponenttraitsin maize(Zea mays L.).Euphytica,2011,182(3):409-422
    [10]何坤辉,常立国,李亚楠,渠建洲,崔婷婷,徐淑兔,薛吉全,刘建超.供氮和不供氮条件下玉米穗部性状的QTL定位.植物营养与肥料学报,2017,23(1):91-100He K H,Chang L G,Li Y N,Qu J Z,Cui T T,Xu S T,Xue J Q,Liu J C.QTL mapping of ear traits of maize with and without N input.Journal of Plant Nutrition and Fertilizer,2017,23(1):91-100
    [11]He K,Chang L,Dong Y,Cui T,Qu J,Lie X,Xu S,Xue J,Liu J.Identification of quantitative trait loci for agronomic and physiological traits in maize(Zea mays L.)under high-nitrogen and low-nitrogen conditions.Euphytica,2018,214(1):15
    [12]兰进好,李新海,高树仁,张宝石,张世煌.不同生态环境下玉米产量性状QTL分析.作物学报,2005,31(10):1253-1259LanJH,LiXH,GaoSR,ZhangBS,ZhangSH.QTL analysisofyieldcomponentsinmaizeunderdifferent environments.Acta Agronomica Sinica,2005,31(10):1253-1259
    [13]刘宗华,汤继华,卫晓轶,王春丽,田国伟,胡彦民,陈伟程.氮胁迫和正常条件下玉米穗部性状的QTL分析.中国农业科学,2007,40(11):2409-2417LiuZH,TangJH,WeiX T,WangCL,TianG W,Hu Y M,Chen W C.QTL Mapping of ear traits under low and high nitrogen conditions in maize.Scientia Agricultura Sinica,2007,40(11):2409-2417
    [14]刘建超,米国华,陈范骏.两种供氮水平下玉米穗部性状的QTL定位.玉米科学,2011,19(2):17-20LiuJC,MiGH,ChenFJ.QTLmappingofeartraitsin maize grown under two nitrogen applications.Journal of Maize Sciences,2011,19(2):17-20
    [15]任志勇,苏顺宗,张素芝,罗博文,刘丹,吴玲,荣廷昭,高世斌.两种磷水平下玉米产量性状的变化及其QTL定位.华北农学报,2015,30(1):9-14Ren Z Y,Su S Z,Zhang S Z,Luo B W,Liu D,Wu L,Rong Y Z,Gao S B.Characterization and QTL mapping of yield trait under twophosphorusregimesinmaize.Acta AgriculturaeBorealiSinica,2015,30(1):9-14
    [16]Li Y L,Niu S Z,Dong Y B,Cui D Q,Wang Y Z,Liu Y Y,Wei M G.Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2∶3 population in popcorn.Theoretical and Applied Genetics,2007,115(1):129-140
    [17]Li J Z,Zhang Z W,Li Y L,Wang Q L,Zhou Y G.QTL consistency andmeta-analysisforgrainyieldcomponentsinthree generations in maize.Theoretical and Applied Genetics,2011,122(4):771-782
    [18]Lu M,Xie C X,Li X H,Hao Z F,Li M S,Weng J F,Zhang D G,Bai L,Zhang S H.Mapping of quantitative trait loci for kernel rownumberinmaizeacrosssevenenvironments.Molecular Breeding,2011,28(2):143-152
    [19]Liu Y,Wang L,Sun C,Zhang Z,Zheng Y,Qiu F.Genetic analysisandmajorQTLdetectionformaizekernelsize andweightinmulti-environments.Theoreticaland Applied Genetics,2014,127(5):1019-1037
    [20]Peng B,Li Y,Wang Y,Liu Z,Tan W,Zhang Y,Wang D,Shi Y,SunB,Song Y,Wang T,Li Y.QTLanalysisforyield componentsandkernel-relatedtraitsinmaizeacrossmultienvironments.Theoretical and Applied Genetics,2011,122(7):1305-1320
    [21]Sabadin K P,Lopes de Souza Júnior C,Pereira de Souza A,Garcia A A.QTLmappingforyieldcomponentsinatropical maize population using microsatellite markers.Hereditas,2008,145(4):194-203
    [22]谭巍巍,李永祥,王阳,刘成,刘志斋,彭勃,王迪,张岩,孙宝成,石云素,宋燕春,杨德光,王天宇,黎裕.在干旱和正常水分条件下玉米穗部性状QTL分析.作物学报,2011,37(2):235-248Tan W W,Li Y X,Wang Y,Liu C,Liu Z Z,Peng B,Wang D,Zhang Y,Sun B C,Shi S Y,Song C Y,Yang D G,Wang T Y,Li Y.QTL Mapping of ear traits of maize under different water regimes.Acta Agronomica Sinica,2011,37(2):235-248
    [23]Tang J,Yan J,Ma X,Teng W,Wu W,Dai J,Dhillon B S,Melchinger A E,Li J.Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2population.Theoretical and Applied Genetics,2010,120(2):333-340
    [24]Upadyayula N,Da Silva H S,Bohn M O,Rocheford T R.Genetic andQTLanalysisofmaizetasselandearinflorescence architecture.Theoretical and Applied Genetics,2006,112(4):592-606
    [25]Yang C,Tang D,Zhang L,Liu J,Rong T.Identification of QTL for ear row number and two-ranked versus many-ranked ear in maize across four environments.Euphytica,2015,206(1):33-47
    [26]Yang C,Zhang L,Jia A,Rong T.Identification of QTL for maize grain yield and kernel-related traits.Journal of Genetics,2016,95(2):239-247
    [27]Coque M,Martin A,Veyrieras J B,Hirel B,Gallais A.Genetic variationforN-remobilizationandpostsilkingN-uptakein asetofmaizerecombinantinbredlines.3.QTLdetectionand coincidences.Theoretical and Applied Genetics,2008,117(5):729-747
    [28]Cai H,Chu Q,Yuan L,Liu J,Chen X,Chen F,Liu J,Zheng Xiu,Chen F,Mi G,Zhang F.Identification of quantitative trait loci for leaf area and chlorophyll content in maize(Zea maysL.)under low nitrogen and low phosphorus supply.Molecular Breeding,2012,30(1):251-266
    [29]Liu X H,Zheng Z P,Tan Z B,He C.Genetic analysis of two new quantitative trait loci for ear weight in maize inbred line Huangzao4.GeneticsandMolecularResearch,2010,9(4):2140-2147
    [30]Liu X H,He S L,Zheng Z P,Huang Y B,Tan Z B,Wu X.Qtl identification for row number per ear and grain number per row in maize.Maydica,2010,55(2):127
    [31]Liu X H,He S L,Zheng Z P,Huang Y B,Tan Z B,Li Z,He C,Wu C,Pu Q B.Identification of the QTLs for grain yield using RIL population under different nitrogen regimes in maize.African Journal of Agricultural Research,2010,5(15):2002-2007
    [32]Liu X H,Zheng Z P,Tan Z B,Li Z,He C.Quantitative trait locus(QTL)mappingfor100-kernelweightofmaize(Zea maysL.)underdifferentnitrogenregimes.AfricanJournalof Biotechnology,2010,9(49):8283-8289
    [33]Li M,Guo X,Zhang M,Li Z,He C.Mapping QTLs for grain yieldandyieldcomponentsunderhighandlowphosphorus treatments inmaize(Zeamays L.).PlantScience,2010,178(5):454-462
    [34]Zhang H,Zheng Z,Liu X,Li Z,He C,Liu D,Luo Y,Zhang G,Tan Z,Li R.QTL mapping for ear length and ear diameter underdifferentnitrogenregimesinmaize.AfricanJournalof Agricultural Research,2010,5(8):626-630
    [35]Ribaut J M,Fracheboud Y,Monneveux P,Banziger M,Vargas M,Jiang C.Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize.Molecular Breeding,2007,20(1):15-29
    [36]Veyrieras J B,Goffinet B,Charcosset A.MetaQTL:a package ofnewcomputationalmethodsforthemeta-analysisofQTL mapping experiments.Bmc Bioinformatics,2007,8(1):49
    [37]Song Y,You J,Xiong L.Characterization of OsIAA1 gene,amemberofrice Aux/IAAfamilyinvolvedinauxinand brassinosteroidhormoneresponsesandplantmorphogenesis.Plant Molecular Biology,2009,70(3):297-309
    [38]Shani E,Salehin M,Zhang Y,Sanchez S E,Doherty C,Wang R,Mangado C M,Song L,Tal I,Pisanty O,Ecker J R,Kay S A,Pruneda-Paz J,Estelle M.Plant stress tolerance requires auxinsensitive Aux/IAA transcriptional repressors.Current Biology,2017,27(3):437-444
    [39]Hu H,Dai M,Yao J,Xiao B,Li X,Zhang Q,Xiong L.Overexpressing a NAM,ATAF,and CUC(NAC)transcription factor enhances drought resistance and salt tolerance in rice.Proceedings of the National Academy of Sciences,2006,103(35):12987-12992
    [40]An X,Liao Y,Zhang J,Dai L,Zhang N,Wang B,Liu L,Peng D.Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance.Plant Growth Regulation,2015,76(2):211-223
    [41]Nakashima K,Takasaki H,Mizoi J,Shinozaki K,YamaguchiShinozakiK.NACtranscriptionfactorsinplantabioticstress responses.BiochimicaetBiophysica Acta(BBA)-Gene Regulatory Mechanisms,2012,1819(2):97-103
    [42]Tran L S P,Nakashima K,Sakuma Y,Simpson S D,Fujita Y,MaruyamaK,FujitaM,SekiM,ShinozakiK,YamaguchiShinozakK.IsolationandfunctionalanalysisofArabidopsis stress-inducibleNACtranscriptionfactorsthatbindtoa drought-responsivecis-elementintheearlyresponsiveto dehydrationstress1promoter.ThePlantCell,2004,16(9):2481-2498
    [43]FujitaM,Fujita Y,MaruyamaK,SekiM,HiratsuK,Ohme-TakagiM,Yamaguchi-ShinozakiM,ShinozakiK.A dehydration-inducedNACprotein,RD26,isinvolvedina novel ABA-dependent stress-signaling pathway.Plant Journal,2010,39(6):863-876
    [44]Lu M,Sun Q P,Zhang D,Wang T,Pan J.Identification of 7stress-related NAC transcription factor members in maize(Zea mays L.)and characterization of the expression pattern of these genes.Biochemical and Biophysical Research Communications,2015,462(2):144-150
    [45]Gontarek B C,Neelakandan A K,Wu H,Becraft P W.NKD transcription factors are central regulators of maize endosperm development.The Plant Cell,2016,28(12):2916
    [46]Yang J,Yang M F,Zhang W P,Chen F,Shen S H.A putative flowering-time-related Dof transcription factor gene,JcDof3,iscontrolledbythecircadianclockinJatrophacurcas.Plant Science,2011,181(6):667-674
    [47]Imaizumi T,Schultz T F,Harmon F G,Ho L A,Kay S A.FKF1F-boxproteinmediatescyclicdegradationofarepressorof CONSTANS in Arabidopsis.Science,2005,309(5732):293-297
    [48]Wang H W,Zhang B,Hao Y J,Huang J,Tian A G,Liao Y,Zhang J S,Chen S Y.The soybean Dof-type transcription factor genes,GmDof4andGmDof11,enhancelipidcontentinthe seeds of transgenic Arabidopsis plants.The Plant Journal,2007,52(4):716-729
    [49]Park D H,Lim P O,KimJ S,ChoD S,Hong S H,Nam H G.The ArabidopsisCOG1geneencodesaDofdomaintranscription factor and negatively regulates phytochrome signaling.The Plant Journal,2003,34(2):161-171
    [50]却枫,黄莹,王枫,徐志胜,王广龙,熊爱生.胡萝卜中dcdofd1转录因子的克隆及其对非生物逆境胁迫的响应分析.植物遗传资源学报,2015,16(5):1073-1079QueF,HuangY,WangF,XuZS,WangGL,Xiong A S.Cloningandexpressionanalysisofatranscriptionfactor,DcDofD1 related to abiotic stress reaction in carrot.Journal of Plant Genetic Resources,2015,16(5):1073-1079
    [51]Noguero M,Atif R M,Ochatt S,Thompson R D.The role of the DNA-binding One Zinc Finger(DOF)transcription factor family in plants.Plant Science,2013,209:32-45
    [52]Gualberti G,Papi M,Bellucci L,Ricci I,Bouchez D,Camilleri C,Costantino P,Vittorioso P.Mutations in the Dof zinc finger genesDAG2andDAG1influencewithoppositeeffectsthe germination of Arabidopsis seeds.The Plant Cell,2002,14(6):1253-1263
    [53]Marzábal P,Gas E,Fontanet P,Vicente-Carbajosa J,Torrent M,Ludevid M D.The maize Dof protein PBF activates transcription of gamma-zein during maize seed development.Plant Molecular Biology,2008,67(5):441-454
    [54]Zhang Y,Liang W,Shi J,Xu J,Zhang D.MYB56 encoding aR2R3MYBtranscriptionfactorregulatesseedsizein Arabidopsisthaliana.JournalofIntegrativePlantBiology,2013,55(11):1166-1178
    [55]Jia G,Li B,Zhang D,Zhang T,Li Z,Dai J,Wang S.Cloning and characterization of a novel R1-MYB transcription factor in maize.Progress in Natural Science,2009,19(9):1089-1096
    [56]冯坤,郑青松,俞佳虹,程远,叶青静,阮美颖,王荣青,李志邈,姚祝平,杨悦俭,魏家香,周国治,万红建.超氧化物歧化酶的遗传特征及其在植物抗逆性中的研究进展.分子植物育种,2017,15(11):4498-4505FengK,ZhengQS,YuJH,Cheng Y,YeQJ,RuanM Y,Wang R Q,Li Z M,Yao Z P,Yang Y J,Wei J X,Zhou G Z,Wan H J.The characteristics of superoxide dismutase(SOD)in evolutions and its research in plant resistance.Molecular Plant Breeding,2017,15(11):4498-4505
    [57]王鹏,段文静,王玉昆,白建芳,苑国良,苑少华,权威,张立平,赵昌平.小麦光温敏雄性不育系BS366铜锌超氧化物歧化酶基因的克隆及表达分析.植物遗传资源学报,2017,18(5):939-951Wang P,Duan W J,Wang Y K,Bai J F,Yuan G L,Yuan S H,Quan W,Zhang L P,Zhao C P.Cloning and expression analysis of a cupro-zinc superoxide dismutase gene from wheat photothermosensitive genic male sterile line BS366.Journal of Plant Genetic Resources,2017,18(5):939-951
    [58]柏斌,吴俊,庄文,姚栋萍,李莺歌,邓启云.广适性光温敏不育系y58s幼穗分化期耐冷性表现及生理机制.植物遗传资源学报,2017,18(4):646-652Bai B,Wu J,Zhuang W,Yao D P,Li Y G,Deng Q Y.Studies on cold tolerance of widely adaptable PTGMS line Y58S and its physiological mechanism at the booting stage.Journal of Plant Genetic Resources,2017,18(4):646-652
    [59]王兴荣,张彦军,李玥,刘天鹏,张金福,祁旭升.干旱胁迫对大豆生长的影响及抗旱性评价方法与指标筛选.植物遗传资源学报,2018,19(1):49-56Wang X R,Zhang Y J,Li Y,Liu T P,Zhang J F,Qi X S.Effects of drought stress on growth and screening methods and indexes fordrought-resistanceinsoybean.JournalofPlantGenetic Resources,2018,19(1):49-56
    [60]Li Q,Yang X H,Bai G H,Warburton M L,Mahukn G,Gore M,Dai J R,Li J S,Yan J B.Cloning and characterization of a putative GS3 ortholog involved in maize kernel development.Theoretical and Applied Genetics,2010,120(4):753-763
    [61]Li Q,Li L,Yang X H,Warburton M L,Bai G H,Dai J R,Li J S,Yan J B.Relationship,evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight.BMC Plant Biology,2010,10(1):143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700