用户名: 密码: 验证码:
瘤胃产甲烷菌与其他微生物间的氢传递及其调控研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interspecific Hydrogen Transfer between Methanogens and Other Microorganisms in Rumen and Its Regulation Strategies:a Review
  • 作者:金舒文 ; 王佳堃
  • 英文作者:JIN Shu-wen;WANG Jia-kun;Institute of Dairy Science,Zhejiang University;
  • 关键词:种间氢传递 ; 氢调控 ; 甲烷减排 ; 产甲烷菌 ; 瘤胃微生物
  • 英文关键词:Interspecific hydrogen transfer;;Hydrogen regulation;;Methane mitigation
  • 中文刊名:ZGXM
  • 英文刊名:Chinese Journal of Animal Science
  • 机构:浙江大学奶业科学研究所;
  • 出版日期:2019-02-10
  • 出版单位:中国畜牧杂志
  • 年:2019
  • 期:v.55
  • 基金:国家自然基金面上项目(31372337);; 浙江省自然科学基金项目(Y13C170003)
  • 语种:中文;
  • 页:ZGXM201902001
  • 页数:6
  • CN:02
  • ISSN:11-2083/S
  • 分类号:6-11
摘要
在反刍动物瘤胃中产甲烷菌生成甲烷既造成能量的浪费又产生大量温室气体,因此减少瘤胃甲烷生成与排放是提升生产效率与维持可持续发展的要求。瘤胃内的产甲烷菌通过共生、黏附和伴生模式,分别从原虫、细菌和真菌中摄取氢,保证氢营养型甲烷生成途径的顺利进行。抑杀原虫和产氢细菌、竞争性结合氢和阻断氢生成甲烷是基于氢调控抑制甲烷生成的途径。由于瘤胃微生物的冗余和互作,降甲烷的同时,瘤胃中饲料消化可能受到抑制,且单一的氢调控往往会诱发瘤胃的适应,瘤胃的降甲烷效果仅能短时间维持。为此,需从瘤胃微生物整体出发,通过多种氢调控机制的添加剂联用及间歇饲喂、幼龄反刍动物瘤胃早期调控、甲烷生成途径关键酶调控等的综合应用,实现更优的甲烷减排。
        The process of methane emission by methanogens in the rumen of ruminants not only causes waste of energy, but also produces a large amount of greenhouse gases. The mitigation of methane emission of rumen is a requirement for both improving production efficiency and sustainable development. The methanogens in the rumen absorb hydrogen from protozoa, bacteria and fungi through mutualistic symbiosis, adhesion and associated modes, ensuring the smooth development of hydrogen-nutrient methane production pathways. Inhibition of protozoa and hydrogen-producing bacteria, competitive binding of hydrogen and blocking of hydrogen to form methane are strategies to inhibit methane production based on hydrogen regulation. Due to the redundancy and interaction of rumen microorganisms, while methane is reduced, feed digestion in the rumen may be inhibited, and a simplex hydrogen regulation often induces rumen adaptation, thus the methane mitigation effect can only be maintained for a short period of time. To this end, it is necessary to seek better methane reduction technology based on the dynamic rumen microbial community and according to the combination of multiple technologies.
引文
[1]Liu Y,Whitman W B.Metabolic,phylogenetic,and ecological diversity of the methanogenic archaea[J].Ann N Y Acad Sci,2008,1125(1):171-189.
    [2]Wolfe R S.Unusual coenzymes of methanogenesis[J].Trends Biochem Sci,1985,10(10):396-399.
    [3]Lindmark D G,Müller M.Hydrogenosome,a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus,and its role in pyruvate metabolism[J].J Biol Chem,1973,248(22):7724-7728.
    [4]Müller M.Review Article:The hydrogenosome[J].J Gen Microbiol,1993,139(12):2879-2889.
    [5]Finlay B J,Esteban G,Clarke K J,et al.Some rumen ciliates have endosymbiotic methanogens[J].FEMS Microbiol Lett1994,117(2):157-161.
    [6]Valle E R,Henderson G,Janssen P H,et al.Considerations in the use of fluorescence in situ hybridization(FISH)and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions[J].Can JMicrobiol,2015,61(6):1-12.
    [7]Ng F,Kittelmann S,Patchett M L,et al.An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms[J].Environ Microbiol,2016,18(9):3010-3021.
    [8]Belanche A,Fuente G,Newbold C J.Study of methanogen communities associated with different rumen protozoal populations[J].FEMS Microbiol Ecol,2014,90(3):663-677.
    [9]Regensbogenova M,Mcewan N R,Javorsky P,et al.A reappraisal of the diversity of the methanogens associated with the rumen ciliates[J].FEMS Microbiol Lett,2004,238(2):307-313.
    [10]Xia Y,Kong Y H,Seviour R,et al.FISH probing of protozoal En--todinium spp.and their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw[J].J Appl Microbiol,2013,116(1):14-22.
    [11]Ishii S,Kosaka T,Hori K,et al.Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus[J].Appl Environ Microbiol,2005,71(12):7838-7845.
    [12]Leahy S C,Kelly W J,Altermann E,et al.The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions[J].PLoS One,2010,5(1):e8926.
    [13]Wei Y Q,Long R J,Yang H,et al.Fiber degradation potential of natural cocultures of Neocallimastix frontalis and Met-hanobrevibacter ruminantium isolated from yaks(Bos grunniens)grazing on the Qinghai Tibetan Plateau[J].Anaerobe,2016,39:158-164.
    [14]Li Y,Jin W,Mu C,et al.Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate[J].J Basic Microbi,2017,57(11):933-940.
    [15]Jin W,Cheng Y F,Mao S Y,et al.Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane[J].Bioresour Technol,2011,102(17):7925-7931.
    [16]Jin W,Cheng Y F,Mao S Y,et al.Discovery of a novel rumen methanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by real-time PCR[J].BMC Microbio,2014,14(1):104.
    [17]Beauchemin K A,Mcginn S M,Benchaar C,et al.Crushed sunflower,flax,or canola seeds in lactating dairy cow diets:effects on methane production,rumen fermentation,and milk production[J].J Dairy Sci,2009,92(5):2118-2127.
    [18]Hatew B,Stringano E,Muellerharvey I,et al.Impact of variation in structure of condensed tannins from sainfoin(Onobrychis viciifolia)on in vitro ruminal methane production and fermentation characteristics[J].J Anim Physiolo An N,2016,100(2):348-360.
    [19]Saminathan M,Sieo C C,Abdullah N,et al.Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation[J].J Sci Food Agrc,2015,95(13):2742-2749.
    [20]Patra A K,Saxena J.Dietary phytochemicals as rumen modifiers:a review of the effects on microbial populations[J].Anton Leeuw J Microb,2009,96(4):363-375.
    [21]Patra A K,Yu Z.Effects of essential oils on methane production and fermentation by,and abundance and diversity of,rumen microbial populations[J].App Environ Microb,2012,78(12):4271-4280.
    [22]Salem H B,Nefzaoui A,Salem L B,et al.Effect of Acacia cyanophylla Lindl.foliage supply on intake and digestion by sheep fed lucerne hay-based diets[J].Anim Feed Sci Tech,1997,68(1-2):101-113.
    [23]Terrill T H,Douglas G B,Foote A G,et al.Effect of condensed tannins upon body growth,wool growth and rumen metabolism in sheep grazing sulla(Hedysarum coronarium)and perennial pasture[J].J Agrc Sci Camb,1992,119(2):265-273.
    [24]Patra A K,Kamra D N,Agarwal N,et al.Effect of plant extracts on in vitro methanogenesis,enzyme activities and fermentation of feed in rumen liquor of buffalo[J].Anim Feed Sci Tech,2006,128(3-4):276-291.
    [25]Jayanegara A,Wina E,Takahashi J.Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen:influence of addition levels and plant sources[J].Asian-Austral J Anim Sci,2014,27(10):1426-1435.
    [26]Khorrami B,Vakili A R,Mesgaran M D,et al.Thyme and cinnamon essential oils:Potential alternatives for monensin as a rumen modifier in beef production systems[J].Anim Feed Sci Tech,2015,200(1):8-16.
    [27]Wu P,Liu Z B,He W F,et al.Intermittent feeding of citrus essential oils as a potential strategy to decrease methane production by reducing microbial adaptation[J].J Clean Prod,2018,194(1):704-713.
    [28]Pathak A K,Dutta N,Pattanaik A K,et al.Effect of condensed tannins fromFicus infectoriaandPsidium guajavaleaf meal mixture on nutrient metabolism,methane emission and performance of lambs[J].Asian Austral J Anim Sci,2017,30(12):1702-1710.
    [29]Beauchemin K A,McGinn S M,Martinez T F,et al.Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle[J].J Anim Sci,2007,85(8):1990-1996.
    [30]Odongo N E,Bagg R,Vessie G,et al.Long-term effects of feeding monensin on methane production in lactating dairy cows[J].J Dairy Sci,2007,90(4):1781-1788.
    [31]Lee S S,Hsu J T,Mantovani H C,et al.The effect of bovicin HC5,a bacteriocin from Streptococcus bovis HC5,on ruminal methane production in vitro[J].FEMS Microbiol Lett,2002217(1):51.
    [32]Melchior E A,Hales K E,Lindholm-Perry A K,et al.The effects of feeding monensin on rumen microbial communities and methanogenesis in bred heifers fed in a drylot[J].Livest Sci,2018,212:131-136.
    [33]Anderson R C,Huwe J K,Smith D J,et al.Effect of nitroethane,dimethyl-2-nitroglutarate and 2-nitro-methyl-propionate on ruminal methane production and hydrogen balance in vitro[J]Bioresour Technol,2010,101(14):5345-5349.
    [34]Tomkins N W,Colegate S M,Hunter R A.A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grainbased diets[J].Anim Prod Sci,2009,49(12):1053-1058.
    [35]Knight T,Ronimus R S,Dey D,et al.Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle[J].Anim Feed Sci Tech,2011,166-167(7):101-112.
    [36]Machado L,Magnusson M,Paul N A,et al.Effects of marine and freshwater macroalgae on in vitro total gas and methane production[J].PLoS One,2014,9(1):e85289.
    [37]Hristov A N,Oh J,Giallongo F,et al.An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production[J].PNAS,2015,112(34):10663-10668.
    [38]Romero-Perez A,Okine E K,Mcginn S M,et al.Sustained reduction in methane production from long-term addition of3-nitrooxypropanol to a beef cattle diet[J].J Anim Sci,2015,93(4):1780-1791.
    [39]Duin E C,Wagner T,Shima S,et al.Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol[J].PNAS,2016,113(22):e3185.
    [40]Patra A K.Enteric methane mitigation technologies for ruminant livestock:a synthesis of current research and future directions[J].Environ Monit Assess,2012,184(4):1929-1952.
    [41]Nolan J V,Hegarty R S,Hegarty J,et al.Effects of dietary nitrate on fermentation,methane production and digesta kinetics in sheep[J].Anim Prod Sci,2010,50(8):801-806.
    [42]Newbold J R,van Zijderveld S M,Hulshof R B,et al.The effect of incremental levels of dietary nitrate on methane emissions in Holstein steers and performance in Nelore bulls[J].J Anim Sci,2014,92(11):5032-5040.
    [43]Patra A K,Yu Z.Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability,fermentation,or bacterial and archaeal communities of the rumen[J].Bioresour Technol,2013,148(8):352-360.
    [44]Patra A K,Yu Z.Effects of garlic oil,nitrate,saponin and their combinations supplemented to different substrates on in vitro fermentation,ruminal methanogenesis,and abundance and diversity of microbial populations[J].J Appl Microbiol,2015,119(1):127-138.
    [45]Abecia L,Martín-García A I,Martínez G,et al.Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning[J].JAnim Sci,2013,91(10):4832-4840.
    [46]Lyons T,Boland T,Storey S,et al.Linseed oil supplementation of lambs’diet in early life leads to persistent changes in rumen microbiome structure[J].Front Microbiol,2017,8:1656.
    [47]Saro C,Hohenester U M,Bernard M,et al.Effectiveness of interventions to modulate the rumen microbiota composition and function in pre-ruminant and ruminant lambs[J].Front Microbiol,2018,9:14.
    [48]Benchaar C,Greathead H.Essential oils and opportunities to mitigate enteric methane emissions from ruminants[J].Anim Feed Sci Tech,2011,s166-167(7):338-355.
    [49]Romero-Perez A,Okine E K,Mcginn S M,et al.The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle[J].J Anim Sci,2014,92(10):4682-4693.
    [50]Martínez-Fernández G,Abecia L,Arco A,et al.Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation,microbial abundance,and methane emissions in sheep[J].J Dairy Sci,2014,97(6):3790-3799.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700