用户名: 密码: 验证码:
细颗粒物凝并长大技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESEARCH PROGRESS ON FINE PARTICLE AGGLOMERATION AND GROWTH
  • 作者:颜滴 ; 姜云超 ; 朱健勇
  • 英文作者:YAN Di;JIANG Yun-chao;ZHU Jian-yong;Key Laboratory of Western China's Environmental Systems ( Ministry of Education) ,College of Earth and Environmental Sciences,Lanzhou University;Gansu Engineering Research Center of Fine Particles Pollution Control Technology and Equipment,College of Earth and Environmental Sciences,Lanzhou University;
  • 关键词:预除尘 ; 细颗粒物 ; 凝并 ; 除尘
  • 英文关键词:pre-dusting;;fine particle;;agglomeration technology;;dust removal
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:兰州大学资源环境学院西部环境教育部重点实验室;兰州大学资源环境学院甘肃省细颗粒污染控制技术与装备工程研究中心;
  • 出版日期:2019-05-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.251
  • 基金:国家自然科学基金青年科学基金项目(51708268);; 甘肃省科技计划项目(18YF1GA103)
  • 语种:中文;
  • 页:HJGC201905033
  • 页数:7
  • CN:05
  • ISSN:11-2097/X
  • 分类号:181-186+208
摘要
随着各类高效除尘器的开发与改进,目前96%~99%以上质量的粉尘已能被有效去除,但细颗粒物的去除效率较低,逃逸粉尘中细颗粒物占比高。通过预凝并技术使细颗粒物团聚长大进而提高其脱除效率,是目前除尘技术研究的一个重要方向,对大气污染的防治起到关键作用。细颗粒物预凝并按机理可以分为湿法凝并、电凝并、声波凝并、磁凝并、湍流凝并、光凝并和热凝并等。重点针对上述前4种凝并技术,对国内外最新研究进展进行总结与分析讨论,并在此基础上对各凝并技术的发展前景进行展望。
        Now more than 96% ~ 99% of the dust load can be removed by different kinds of high-efficiency particle precipitators,but the removal efficiency is lower for fine particles. As a result,considerable amount of fine particles escape from the precipitators. The pre-agglomeration techniques attract the increasing attention since the techniques are benefit to the agglomeration,growth,and collection of fine particles further improving its removal efficiency. The pre-agglomeration techniques play an important role in controlling air pollution. According to different mechanisms,the pre-agglomeration techniques were divided into wet agglomeration, electric agglomeration, acoustic coagulation, magnetic agglomeration,turbulence coagulation,light agglomeration,and thermal coagulation,etc. For the wet agglomeration,electric agglomeration,magnetic agglomeration and acoustic agglomeration,this paper mainly introduced the agglomeration theories and reviewed their progresses. Based on that,the paper also provided an outlook of the future of the agglomeration techniques.
引文
[1]王大春,陈璞珑,黄图南,等.宜兴市细颗粒物化学特征和来源解析[J].环境监测管理与技术,2018(2):11-15.
    [2]李明,张永勇,侯立安.我国室内空气细颗粒物污染现状与防控对策[J].环境工程技术学报,2018(2):117-127.
    [3] Yao Q,Li S Q,Xu H W,et al. Studies on formation and control of combustion particulate matter in China:a review[J]. Energy,2009,34(9):1296-1309.
    [4]邓文义,沈恒根,苏亚欣.燃烧源PM2. 5控制技术研究现状及展望[J].环境工程,2014,32(7):85-90.
    [5]靳星.静电除尘器内细颗粒物脱除特性的技术基础研究[D].北京:清华大学,2013.
    [6] Elperin T, Kleeorin N, Krasovitov B, et al. Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere[J]. Physical Review E Statistical Nonlinear&Soft Matter Physics,2015,92(1).
    [7]董子文,齐庆杰,于文惠.煤矿喷雾降尘雾滴存活时间的数值模拟[J].安全与环境学报,2017,17(2):506-511.
    [8] Polat M, Polat H. Characterization of airborne particles and droplets:relation to amount of airborne dust and dust collection efficiency[J]. Particle&Particle Systems Characterization,2002,19:38-46.
    [9] Thielmann F,Naderi M. The effect of primary particle surface energy on agglomeration rate in fluidized bed wet granulation[J].Power Technology,2008,181:160-168.
    [10]辛成运,杨林军,王海芳.蒸汽相变促进WFGD系统脱除PM2. 5的协同作用分析[J].环境科学与技术,2010,33(4):97-99.
    [11] Bao J,Yang L J. Removal of fine particles by heterogeneous condensation in the double-alkali desulfurization process[C].Chemical Engineering&Processing:Process Intensification,2011,50(8):828-835.
    [12]徐俊超,于燕,张军,等.润湿剂促进细颗粒在水汽条件下长大的实验研究[J].东南大学学报(自然科学版),2017,47(1):67-72.
    [13] Wu H,Pan D P,Jiang Y Z. Improving the removal of fine particles from desulfurized flue gas by adding humid air[J]. Fuel,2016,184:153-161.
    [14]凡凤仙,温高森.蒸汽相变促进可溶PM2. 5凝结增长的数值分析[J].中国环境科学,2014,34(5):1119-1124.
    [15]王仕卓.电除尘器技术与喷雾洗涤技术的有效结合及应用[C].第16届中国电除尘学术会议论文集,2015.
    [16]王雪,吕韩雷,朱廷钰,等.细颗粒物电凝并技术研究进展[J].煤化工,2016,44(3):51-54.
    [17]鲍重光.静电技术原理[M].北京:北京理工大学出版社,1993.
    [18] Tan B,Wang L Z,Zhang X R. The effect of an external DC electric field on bipolar charged aerosol agglomeration[J]. Journal of Electrostatics,2007,65(2):82-86.
    [19] Zukeran A,Ikeda Y,Ehara Y,et al. Agglomeration of particles by AC corona discharge[J]. Electrical Engineering in Japan,2000,130(1):30-37.
    [20] Boichot R,Bernis A. Agglomeration of diesel particles by an electrostatic agglomerator under positive DC voltage:experimental study[J]. Journal of Electrostatics,2008,66(5):235-245.
    [21]陈旺生,陆继东.偶极荷电静电凝并除尘器收尘机理及性能研究[J].环境工程学报,2008,2(7):973-976.
    [22]刘忠,刘含笑,冯新新,等.湍流聚并器流场和颗粒运动轨迹模拟[J].中国电机工程学报,2012,32(14):71-75.
    [23] Watanabe T,Tochikubo F,Koizurni Y,et al. Submicron particle agglomeration by an electrostatic agglomerator[J]. Journal of Electrostatics,1995,34(4):367-383.
    [24] Lehtinen K J, Jokiniemi J, Kauppinen E, et al. Kinematic coagulation of charged droplets in an alternating electric field[J].Aerosol Science&Technology,1995,23(3):422-430.
    [25]周建刚,刘栋,白敏菂.烟道中同极性荷电粉尘的凝并研究[J].环境工程,2009,27(2):12-14.
    [26]李敬波,许淑惠,牛润萍,等.高频交流电场中细颗粒物凝并的实验研究[J].环境科学与技术,2017(9):8-13.
    [27] Ji J H, Hwang J, Bae G N, et al. Particle charging and agglomeration in DC and AC electric fields[J]. Journal of Electrostatics,2004,61(1):57-68.
    [28]李敬波,许淑惠,牛润萍,等.高频交流电场中细颗粒物凝并的实验研究[J].环境科学与技术,2017,40(9):8-13.
    [29]冯涛.异极性荷电粉尘在电场中的凝并与收集[D].天津:天津大学,2006.
    [30]白敏菂.微细粉尘在交变电场中的荷电凝并研究[C]∥中国物理学会第十八届全国静电学术会议会议论文集,2013.
    [31]邬长福,李义杰,陈祖云.水雾荷电除尘效率影响因素实验研究及其权重分析[J].环境监测管理与技术,2017,29(4).
    [32]王涌,吴君周,张燕燕.异极性荷电粒子的磁凝并系数建模分析[J].环境科学与技术,2015,38(4):56-59.
    [33] Polat M,Polat H,Chander S,et al. Characterization of airborne particles and droplets:relation to amount of airborne dust and dust collection efficiency[J]. Particle&Particle Systems Characterization,2002,19:38-46.
    [34] Svoboda J,Fujita T. Recent developments in magnetic methods of material separation[J]. Minerals Engineering,2003,16(9):785-792.
    [35] Kumar P, Biswas P. Analytical expressions of the collision frequency function for aggregation of magnetic particles[J]. Journal of Aerosol Science,2005,36(4):455-469.
    [36]颜幼平,陈凡植.磁分离除尘的初步实验研究及其机理分析[J].环境工程,1999(4):41-10.
    [37]许冬花.自吸喷雾磁化降尘研究[D].镇江:江苏大学,2010.
    [38]韩松,赵长遂.燃煤飞灰中可吸入颗粒物在磁场中聚并收尘试验研究[J].锅炉技术,2006,37(增刊1):12-15.
    [39]李永旺,赵长遂.燃煤可吸入颗粒物在磁场中聚并脱除机理[J].化工学报,2007,58(4):987-993.
    [40]刘晓睿.室内细颗粒物在磁场及交直流电场中凝并实验研究[D].北京:北京交通大学,2016.
    [41] Ukai T,Morimoto H,Maekawa T. Cluster-cluster aggregations of superparamagnetic particles in a rotational magnetic field[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2011,83(1):061406.
    [42] Gonzálezgutiérrez J, Carrilloestrada J L, Ruizsuárez J C.Aggregation and dendritic growth in a magnetic granular system[J].Journal of Statistical Mechanics Theory&Experiment,2013(12):P12015.
    [43] Zhou D, Luo Z. Preliminary experimental study of acoustic agglomeration of coal-fired fine particles[J]. Procedia Engineering,2015,102:1261-1270.
    [44] Zhou D,Luo Z,Fang M,et al. Numerical calculation of particle movement in sound wave fields and experimental verification through high-speed photography[J]. Applied Energy,2016,185.
    [45]黄永刚,杨林军.燃烧源可吸入颗粒物声波凝并技术进展[J].能源研究与利用,2008(6):9-12.
    [46]颜金培,杨林军.声波与相变联合作用下细颗粒脱除的实验研究[J].中国电机工程学报,2014,34(20):3282-3288.
    [47]颜金培,陈立奇,杨林军,等.声波与相变耦合协同湿法烟气脱硫细颗粒脱除[C]∥中国环境科学学会学术年会,2016.
    [48]张学光,朱颖杰,周涛涛.喷雾对促进细颗粒物声波凝并的影响[J].化工学报,2017,68(3):864-869.
    [49] Zhou D,Luo Z,Jiang J,et al. Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment[J]. Powder Technology,2016,289:52-59.
    [50] Yan J, Chen L, Li Z. Removal of fine particles from coal combustion in the combined effect of acoustic agglomeration and seed droplets with wetting agent[J]. Fuel,2016,165:316-323.
    [51]刘定平,罗伟乐.种子颗粒联合声波凝并微细颗粒的研究[J].华南理工大学学报(自然科学版),2017,45(6):131-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700