用户名: 密码: 验证码:
电场驱动熔融喷射沉积高分辨率3D打印
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-resolution fused deposition 3D printing based on electric-field-driven jet
  • 作者:赵佳伟 ; 兰红波 ; 杨昆 ; 彭子龙 ; 李涤尘
  • 英文作者:ZHAO Jia-wei;LAN Hong-bo;YANG Kun;PENG Zi-long;LI Di-chen;Qindao Engineering Research Center for 3D Printing,Qingdao University of Technology;State Key Laboratory for Manufacturing Systems Engineering,Xi'an Jiaotong University;
  • 关键词:高分辨3D打印 ; 电场驱动喷射 ; 双加热喷头 ; 熔融沉积成型 ; 微纳增材制造
  • 英文关键词:high-resolution 3D printing;;electric-field-driven jetting;;double heating nozzle;;fused deposition modeling;;micro/nano-additive manufacturing
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:青岛理工大学青岛市3D打印工程研究中心;西安交通大学机械制造系统工程国家重点实验室;
  • 出版日期:2019-04-30 14:07
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.301
  • 基金:国家自然科学基金资助项目(51775288,51875300);; 山东省重点研发计划资助项目(2018GGX103022)
  • 语种:中文;
  • 页:BJKD201905012
  • 页数:10
  • CN:05
  • ISSN:10-1297/TF
  • 分类号:109-118
摘要
针对传统熔融沉积成型面临的成型精度低和打印材料受限,基于电流体动力熔融沉积在成形高度、材料种类、基板导电性和平整性、3D成形能力等方面的不足和局限性,本研究提出一种电场驱动熔融喷射沉积3D打印新工艺,其采用双加热集成式喷头并施加单极脉冲高电压(单电势),利用电场驱动微量热熔融材料喷射并精准沉积来形成高分辨率结构.引入两种新的打印模式:脉冲锥射流模式和连续锥射流模式,拓展了可供打印材料的种类和范围.通过理论分析、数值模拟和实验研究,揭示了所提出工艺的成形机理、作用机制以及成形规律.利用提出的电场驱动熔融喷射沉积3D打印方法,结合优化工艺参数,完成了三个典型工程案例,即大尺寸微尺度模具、大高宽比微结构、宏微跨尺度组织支架和网格三维结构.其中采用内径250μm喷头,打印出最小线宽4μm线栅结构,高宽比达到25∶1薄壁圆环微结构.结果表明,电场驱动熔融喷射沉积高分辨率3D打印具有打印分辨率高、材料普适性广、宏/微跨尺度的突出优势,为实现低成本、高分辨率熔融沉积3D打印提供了一种全新的解决方案.
        The existing fused deposition modeling(FDM) technique faces disadvantages of low resolution and limited printable materials; meanwhile the E-jet-based fused deposition method confronts limitations associated with the formation height,material type,conductivity,and flatness of the substrate,and the 3 D forming ability. Herein,a new technology called electric-field-driven fused-jet deposition 3 D printing was proposed. In the proposed technology,a dual-heated integrated nozzle connected to a single positive-pulse high voltage(single potential) was used to eject and precisely deposit a small amount of molten material to form a high-resolution structure based on the drive of the electric field force. Two novel printing modes,the continuous-cone and pulse-cone jet modes,were developed to broaden the range of printable materials using the proposed technique. The mechanism and rules of formation for the proposed process were systematically investigated via theoretical analysis,numerical simulation,and experimental verification. Using optimized process parameters and the proposed electric-field-driven fused-jet deposition 3 D printing method,three typical cases,including a large micro-scale mold,a high-aspect-ratio micros-scale structure,a macro-micro-scale tissue scaffold,and a three-dimensional grid structure were fabricated. Outstanding results were obtained,including the printing of a wire grid structure with a minimum line width of 4 μm and a thin-walled ring microstructure with an aspect ratio of 25∶ 1 using a nozzle with an inner diameter of 250 μm. The experimental results demonstrate that the proposed electric-field-driven fused-jet-deposition 3 D printing method is a promising and effective method that meets the requirements of the high-resolution FDM process at low cost. The new technolgy proposed in this paper offers a novel solution for realizing high-resolution and macro/micro-scale fused-jet deposition 3 D printing at low cost with good material universality.
引文
[1] Ngo T D,Kashani A,Imbalzano G,et al. Additive manufacturing(3D printing):a review of materials,methods,applications and challenges. Composites Part B:Eng,2018,143:172
    [2] Mac Donald E,Wicker R. Multiprocess 3D printing for increasing component functionality. Science,2016,353(6307):1512
    [3] Lewis J A,Ahn B Y. Device fabrication:Three-dimensional printed electronics. Nature,2015,518:42
    [4] Zhang B,Seong B,Nguyen V,et al. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J Micromech Microeng,2016,26(2):025015
    [5] Bae J,Lee J,Hyun Kim S. Effects of polymer properties on jetting performance of electrohydrodynamic printing. J Appl Polym Sci,2017,134(35):45044
    [6] Zou S T,Lan H B,Qian L,et al. Effects and rules of E-jet 3D printing process parameters on Taylor cone and printed patterns.Chin J Eng,2018,40(3):373(邹淑亭,兰红波,钱垒,等.电流体动力喷射3D打印工艺参数对泰勒锥和打印图形的影响和规律.工程科学学报,2018,40(3):373)
    [7] Onses M S,Sutanto E,Ferreira P M,et al. Mechanisms,capabilities,and applications of high-resolution electrohydrodynamic jet printing. Small,2015,11(34):4237
    [8] Lan H B,Li D C,Lu B H. Micro-and nanoscale 3D printing. Scientia Sinica(Technol),2015,45(9):919(兰红波,李涤尘,卢秉恒.微纳尺度3D打印.中国科学:技术科学,2015,45(9):919)
    [9] Dalton P D. Melt electrowriting with additive manufacturing principles. Curr Opin Biomed Eng,2017,2:49
    [10] Hrynevich A,Eli B S,Haigh J N,et al. Dimension-based design of melt electrowritten scaffolds. Small,2018,14(22):1800232
    [11] Hochleitner G,Jüngst T,Brown T D,et al. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication,2015,7(3):035002
    [12] Muerza-Cascante M L,Haylock D,Hutmacher D W,et al. Melt electrospinning and its technologization in tissue engineering. Tissue Eng Part B,Rev,2015,21(2):187
    [13] Feiner R,Fleischer S,Shapira A,et al. Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J Controlled Release,2018,281:189
    [14] Grémare A,Guduric V,Bareille R,et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res Part A,2018,106(4):887
    [15] Ovsianikov A,Khademhosseini A,Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies.Trends Biotechnol,2018,36(4):348

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700