用户名: 密码: 验证码:
黄河站和Tromso站亚暴期间热层风场观测结果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermospheric Wind over Chinese Yellow River Station and Tromso during Auroral Substorm
  • 作者:吴鹏举 ; 张燕革 ; 艾勇
  • 英文作者:WU Pengju;ZHANG Yange;AI Yong;School of Electronic Information, Wuhan University;
  • 关键词:法布里-珀罗干涉仪 ; 热层中性风场 ; 极光亚暴 ; 离子拖曳 ; 焦耳加热
  • 英文关键词:FPI;;Thermospheric neutral wind;;Auroral substorm;;Ion drag;;Joule heating
  • 中文刊名:KJKB
  • 英文刊名:Chinese Journal of Space Science
  • 机构:武汉大学电子信息学院;
  • 出版日期:2019-03-15
  • 出版单位:空间科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家海洋局极地考察办公室对外合作项目资助(201606)
  • 语种:中文;
  • 页:KJKB201902005
  • 页数:8
  • CN:02
  • ISSN:11-1783/V
  • 分类号:38-45
摘要
中高层大气风场探测对研究大气物理过程具有极为重要的意义,尤其是在极地地区,风场对大气结构的影响更为剧烈.针对亚暴期间中国北极黄河站和日本Tromso站上空OI557.7nm气辉层(低热层)中性风场,利用全天空法布里-珀罗干涉仪(all-sky Fabry-Perot Interferometer, all-sky FPI)探测气辉谱线的多普勒频移,反演气辉层的大气风场信息.结果表明,低热层风场平均水平在100 m·s~(-1)左右,热层风场在极地地区更为剧烈,纬度相对较低的Tromso站探测到的风速整体小于同期黄河站上空的风速.结合离子风数据,分析离子拖拽和焦耳加热对中性风的影响过程,发现极光亚暴不仅对低热层风场有增强作用,也有明显的抑制效果,但整体风向都垂直于极光弧变化.
        The wind detection for the middle and upper atmosphere is of great significance to the study of atmospheric physical processes. In the polar region, atmospheric structure changes more quickly. By the all-sky Fabry-Perot interferometer, the Doppler shift of the airglow can be detected to retrieve the wind velocity at the airglow layer. In this paper, the neutral wind is studied at the OI557.7 nm oxygen-atom layer in the Arctic Yellow River Station and the Tromso Station during a substorm. The average wind velocity is about 100 m·s~(-1) in the lower thermosphere. Due to the geomagnetic distribution, the thermospheric wind velocity increases sharply in the polar region.Finally, considering ion drift data, the influence of ion drag and Joule heating on the neutral wind is discussed. The results show that auroral substorm would not only make the wind stronger in the lower thermosphere but also inhibit it. Moreover, the wind velocity is perpendicularly to the auroral arc generally.
引文
[1] VICKERS H, KOSCH M J, SUTTON E, et al. A solar cycle of upper thermosphere density observations from the EISCAT Svalbard Radar[J]. J. Geophys. Res.:Space Phys., 2014, 119(8):6833-6845
    [2] LIUZZO L R, RIDLEY A J, PERLONGO N J, et al.High-latitude ionospheric drivers and their effects on wind patterns in the thermosphere[J]. J. Geophys. Res.:Space Phys., 2015, 120(1):715-735
    [3] ZHANG H, YONG A, ZHANG Y G, et al. First observation of thermospheric neutral wind at Chinese Yellow River Station in Ny-Alesund, Svalbard[J]. Chin. Sci. Bull.,2013, 58(11):1310-1315
    [4] WANG Y J, WANG Y M, WANG H M. Simulation of ground-based Fabry-Perot interferometer for the measurement of upper atmospheric winds[J]. Chin. J. Geophys.,2014, 57(6):1732-1739
    [5] HUANG Y, MAKELA J J, SWENSON G R. Simulations of imaging Fabry-Perot interferometers for measuring upper-atmospheric temperatures and winds[J]. Appl.Opt., 2012, 51(17):3787-3800
    [6] HEELIS R A. Electrodynamics in the low and middle latitude ionosphere:a tutorial[J]. J. Atmos. Solar-Terr.Phys., 2004, 66(10):825-838
    [7] DAVID M, SOJKA J J, SCHUNK R W. How uncertainty in the neutral wind limits the accuracy of ionospher-ic modeling and forecasting[J]. J. Geophys. Res.:Space Phys., 2016, 121(1):519-528
    [8] XI G Y, ZHU F B, GAN Y, et al. Research on the regional short-term ionospheric delay modeling and forecasting methodology for mid-latitude area[J]. GPS Solutions,2015, 19(3):457-465
    [9] ZHANG H. Study on the Thermosphere Wind Field with the All-sky Fabry-Perot Interferometer[D]. Wuhan:Wuhan University, 2013(张虹.全天空Fabry-Perot干涉仪对热层大气风场的探测[D].武汉:武汉大学,2013)
    [10]BRANDSTROM U. The Auroral Large Imaging System—Design, Operation and Scientific Results[D]. Kiruna:Swedish Institute of Space Physics, 2003
    [11] QIU Qi, YANG Huigen, LU Quanming, et al. Motion of dayside auroral arc observed at Yellow River Station affected by the Earth's rotation[J]. Chin. J. Space Sci.,2016, 36(6):909-915(丘琪,杨惠根,陆全明,等.地球自转对北极黄河站观测日侧极光弧运动的影响[J].空间科学学报,2016,36(6):909-915)
    [12] RICHMOND A D. Gravity wave generation, propagation,and dissipation in the thermosphere[J]. J. Geophys. Res.:Space Phys., 1978, 83(A9):4131-4145
    [13] LU G, RICHMOND A D, LUHR H, et al. High-latitude energy input and its impact on the thermosphere[J]. J.Geophys. Res.:Space Phys., 2016, 121(7):7108-7124
    [14] LIU J. Observations on Thermospheric Vector Wind Field during Substorms by an All-sky FPI[D]. Wuhan:Wuhan University, 2014(刘珏.全天空Fabry-Perot干涉仪对亚暴期间热层矢量风场的探酒[D].武汉:武汉大学,2014)
    [15] WILSON G R, WEIMER D R, WISE J O, et al. Response of the thermosphere to Joule heating and particle precipitation[J]. J. Geophys. Res.:Space Phys., 2006,111:A10314
    [16] TSUDA T T, NOZAWA S, OYAMA S, et al. Acceleration mechanism of high-speed neutral wind observed in the polar lower thermosphere[J]. J. Geophys. Res.:Space Phys., 2009, 114(A4):231-261
    [17] JOHNSON R M. Sondrestrom incoherent scatter radar observations during the lower thermosphere coupling study:September 21-26, 1987[J]. J. Geophys. Res.:Space Phys., 1991, 96(A2):1081-1090
    [18] ZHANG Guohua, YUN Jianping, Ai Yong, et al. Response of polar thermosphere neutral wind to the night side ion drag during IMF disturbance[J]. Sci. Tech. Eng.,2015, 15(28):4-9(张国华,郧建平,艾勇,等.行星际磁场扰动下极区热层中性风对夜侧离子拖曳的响应[J].科学技术与工程,2015,15(28):4-9)
    [19] XIONG Bo, ZHANG Yange, Ai Yong, et al. Study of the lower thermospheric neutral wind at Chinese Arctic Yellow River Station during auroral substorms[J]. Chin. J.Space Sci., 2013, 33(6):629-636(熊波,张燕革,艾勇,等.北极黄河站极光亚暴期间低热层大气中性风研究[J].空间科学学报,2013, 33(6):629-636)
    *http://www.soyama.org/data

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700