用户名: 密码: 验证码:
嵌入式大气数据测量系统技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Flush Air Data Sensing System
  • 作者:丁智 ; 周欢 ; 吴东升 ; 吴颖川 ; 贺元元
  • 英文作者:DING Zhi-jian;ZHOU Huan;WU Dong-sheng;WU Ying-chuan;HE Yuan-yuan;Air-breathing Hypersonic Technology Research Center, China Aerodynamics Research and Development Center;Institute of System Engineering, China Academy of Engineering Physics;
  • 关键词:嵌入式大气数据测量系统(FADS) ; 高超声速技术 ; 飞行试验 ; 高超声速飞行器
  • 英文关键词:Flush air data sensing system(FADS);;Hypersonic technology;;Flight test;;Hypersonic vehicle
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:中国空气动力研究与发展中心吸气式高超声速技术研究中心;中国工程物理研究院总体工程研究所;
  • 出版日期:2019-03-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:中国空气动力研究与发展中心风雷青年创新基金(FLYIF2016-26);; 中国工程物理研究院院长基金(YZJJLX2017005)
  • 语种:中文;
  • 页:YHXB201903002
  • 页数:11
  • CN:03
  • ISSN:11-2053/V
  • 分类号:5-15
摘要
针对高超声速飞行器大气数据测量问题,对嵌入式大气数据测量系统(FADS)技术研究背景、发展历程、国内外研究现状等进行了概括。重点围绕FADS关键技术、FADS解算算法及面向FADS/INS组合测量系统信息融合算法方面,对FADS技术进行了深入的剖析。最后,展望了FADS技术未来的发展方向及应用前景。
        Aiming at the flush air data sensing technology in the hypersonic vehicles, the research background and history of the flush air data sensing system(FADS) is reviewed, and the research status in the world is introduced. Then, three key techniques, including the key technologies, algorithms, information fusion approaches based on the FADS and the INS, are analyzed in detail. Finally, the further research and the application prospects of the FADS are proposed.
引文
[1] 冯志高,关成启,张红文. 高超声速飞行器概论[M]. 北京:北京理工大学出版社, 2016.
    [2] 蔡国飙,徐大军. 高超声速飞行技术[M]. 北京:科学出版社, 2012.
    [3] Jost M, Schwegmann F, K?hler T. Flush air data system-an advanced air data system for the aerospace industry [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, August 16-19, 2004.
    [4] Cary J P, Keener E R. Flight evaluation of the X-15 ball-nose flow-direction sensor as an air-data system [R]. NASA TN D-2923, 1965.
    [5] Row P V, Fischel J. Operational flight-test experience with the X-15 airplane [R]. AIAA Space Flight Testing Conference, Cocoa Brach, Florida, USA, March 18-30, 1963.
    [6] Woeste T J. Shuttle entry air data system-an experimental investigation of calibration for ascent flight [C]. The 30th Aerospace Sciences Meeting & Exhibit, Reno, USA, January 6-9, 1992.
    [7] Siemers P M, Paul M, Henry M W, et al. Shuttle entry air data system (SEADS)-flight verification of an advanced air data system concept[R]. AIAA 88-2104, 1988.
    [8] Henry M W, Wolf H, Siemers P M. An evaluation of shuttle entry air data system (SEADS) flight pressures comparisons with wind tunnel and theoretical predictions[C]. The 15th AIAA Aerodynamic Testing Conference, San Diego, USA, May 1988.
    [9] Whitmore S A, Moes T R, Larson T J. Preliminary results from a subsonic high angle-of-attack flush air data sensing (HI-FADS) system: design, calibration, and flight test evaluation [R]. AIAA-90-0232, 1990.
    [10] Whitmore S A. Development of a pneumatic high-angle-of-attack flush air data sensing (HI-FADS) system [R]. NASA 19920002776, 1992.
    [11] Weiss S. Comparing Three algorithms for modeling flush air data systems [C]. The 40th Aerospace Sciences Meeting & Exhibit, Reno, USA, 2002.
    [12] Whitmore S A, Cobleigh B R, Haering E A. Design and calibration of the X-33 flush air data sensing (FADS) system [R]. NASA TM-206540, AIAA-98-0201, 1998.
    [13] Cobleigh B R, Whitmore S A. Flush air data sensing (FADS) system calibration procedures and results for blunt forebodies [R]. NASA TP-1999-209012, 1999.
    [14] Ellsworth J C, Whitmore S A. Reentry air data system for a sub-orbital spacecraft based on X-34 design [C]. The 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, January 8-11, 2007.
    [15] Ellsworth J C, Whitmore S A. Simulation of a flush air-data system for transatmospheric vehicles[J]. Journal of Spacecraft and Rocket, 2008, 45(4): 716-732.
    [16] Baunn E, Pahle J W, Davis M C, et al. The X- 43A flush airdata sensing system flight-test results[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 48-61.
    [17] Takaki R, Takizawa M. ADS measurement of HYFLEX (hypersonic flight experiment) [C]. The 35th AIAA Aerospace Sciences Meeting & Exhibit, Reno, USA, 1997.
    [18] Theil S, Markus S, Marcus H, et al. Hybrid navigation system for the SHEFEX II mission [C]. AIAA Guidance, Navigation and Control Conference, Honolulu, USA, 2008.
    [19] Karlgaard C D, Prasad K, Mark S, et al. Mars entry atmospheric data system trajectory reconstruction algorithms and flight results [R]. AIAA-2013-0028, 2013.
    [20] Karlgaard C D, Kutty P, Schoenenberger M, et al. Mars science laboratory entry atmospheric data system trajectory and atmosphere reconstruction[D]. Journal of Spacecraft and Rockets, 2014, 51(4): 1029-1047.
    [21] 郑成军. 嵌入式大气数据传感系统及其算法研究[D]. 南京:南京航空航天大学, 2005.[Zheng Chen-jun.Research on algorithms of flush air data sensing system[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2005.]
    [22] 宋秀毅. 嵌入式大气数据传感系统算法及应用研究[D]. 南京:南京航空航天大学, 2008.[Song Xiu-yi.Research on algorithms and spplications of flush air data sensing system[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008.]
    [23] 沈国清. 嵌入式大气数据传感系统误差分析及其消除方法研究[D]. 南京:南京航空航天大学, 2012.[Shen Guo-qing.Error analysis of flush air data sensing system and research on menthods of error eliminating[D].Nanjing.Nanjing University of Aeronautics and Astronautics,2012.]
    [24] 孙大飞. 飞翼布局飞行器FADS系统应用方案研究[D]. 南京:南京航空航天大学, 2014.[Sun Da-fei.Research on FADS system application profile of flying wing aircraft layout[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.]
    [25] 秦永明,张春,董金刚. 嵌入式大气数据传感系统风洞标定试验研究[J]. 空气动力学学报, 2015, 33(4): 488-492. [Qin Yong-ming, Zhang Chun, Dong Jin-gang. Experimental study on flush air data sensing system calibration in wind tunnel[J]. Acta Aerodynamica Sinica, 2015, 33(4): 488-492.]
    [26] 陈广强,刘吴月,豆修鑫. 吸气式空空导弹FADS设计[J]. 中国科学, 2016, 45(11): 1193-1206. [Cheng Guang-qiang, Liu Wu-yue, Dou Xiu-xin. Flush air data sensing system design for air breathing air-to-air missile[J]. SCIENTIA SINICA, 2016, 45(11): 1193-1206.]
    [27] Samy I, Postlethwaite I, Gu D. Subsonic tests of a flush air data sensing system applied to a fixed-wing micro air vehicle[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2008, 54 (1): 275-295.
    [28] 李清东,王伟,任章. FADS压力传感器冗余配置研究[J]. 计算机仿真, 2008, 25(11): 48-51. [Li Qing-dong, Wang Wei, Ren Zhang. Redundancy configuration of pressure sensors in flush air data sensing system[J]. Computer Simulation, 2008, 25(11): 48-51.]
    [29] 王鹏,金鑫,张卫民. 嵌入式大气数据传感系统的测压孔配置[J]. 力学与实践, 2017, 39(2):1-8. [Wang Peng, Jin Xin, Zhang Wei-min. Pressure ports configuration for the flush air data sensing system (FADS)[J]. Mechanics in Engineering, 2017, 39(2): 1-8.]
    [30] 郑守铎,陆宇平,叶玮. 小扰动线性化分析法在嵌入式大气传感系统中的应用[J]. 飞机设计, 2007, 27(3): 13-17. [Zhen Shou-duo, Lu Yu-ping, Ye Wei. Application of small disturbances linearized stability analysis to FADS system[J]. Aircraft Design, 2007, 27(3): 13-17.]
    [31] Zheng C, Lu Y, He Z. Improved algorithms for flush airdata sensing system[J]. Chinese Journal of Aeronautics, 2006, 19(4): 334-339.
    [32] 郑成军,陆宇平,陈峰. 广义逆在嵌入式大气数据传感系统中的应用[J]. 传感器与微系统, 2006, 25(5): 81-84. [Zheng Cheng-jun, Lu Yu-ping, Chen Feng. Application of pseudoinverse matrix in flush air data sensing system[J]. Transducer and Microsystem Technologies, 2006, 25(5): 81-84.]
    [33] Rohloff T J, Whitmore S A, Catton I. Fault tolerant neural network algorithm for flush air data sensing[J]. Journal of Aircraft, 1999, 36(3): 541-549.
    [34] 张斌,于盛林. 嵌入式飞行参数传感系统的神经网络算[J]. 航空学报, 2006, 27(2): 294-298. [Zhang Bin, Yu Sheng-lin. Neural network algorithm for flush air data sensing system[J]. Acta Aeronautica Et Astronautica Sinica, 2006, 27(2): 294-298.]
    [35] 郑成军,陆宇平,高璐. BP网络在嵌入式大气数据传感系统中的应用[J]. 测控技术, 2006, 25(6): 9-12. [Zheng Cheng-jun, Lu Yu-ping, Gao Lu. Application of back propagation in flush air data sensing system[J]. Measurement & Control Technology, 2006, 25(6): 9-12.]
    [36] 王岩,郑伟. 分布嵌入式大气数据系统算法的初步研究[J]. 飞机设计, 2008, 28(6): 5-11. [Wang Yan, Zheng Wei. Elementary study on the distributed flush air data system arithmetic[J]. Aircraft Design, 2008, 28(6): 5-11.]
    [37] 王逸斌,刘学强,覃宁,等. 嵌入式大气数据系统Kriging算法模型[J]. 测控技术, 2015, 34(3): 138-141. [Wang Yi-bin, Liu Xue-qiang, Tan Ning, et al. A novel flush air data system model based on Kriging algorithm[J]. Measurement & Control Technology, 2015, 34(3): 138-141.]
    [38] 李少雄,张军超. 嵌入式大气数据系统算法研究[J]. 航空科学技术, 2015, 26(12): 37-42. [Li Shao-xiong, Zhang Jun-chao. Research on algorithms of flush air data system[J]. Aeronautical Science & Technology, 2015, 26(12): 37-42.]
    [39] 宋秀毅,陆宇平. 嵌入式大气数据传感系统压力传感器设计研究[J]. 计测技术, 2007, 27(5): 8-10. [Song Xiu-yi, Lu Yu-ping. Research on design of pressure sensor of embedded airdata sensing system[J]. Metrology & Measurement Technology, 2007, 27(5): 8-10.]
    [40] 高隆隆,杜经民,李宝仁. FADS测压管路动态响应特性分析[J]. 机床与液压, 2010, 38(13): 48-51. [Gao Long-long, Du Jing-min, Li Bao-ren. Dynamic response characteristic of FADS pneumatic tube[J]. Machine Tool & Hydraulics, 2010, 38(13): 48-51.]
    [41] 李清东,张孝功,任章. FADS压力传感器延迟补偿[J]. 航天控制, 2008, 26(6): 12-15. [Li Qing-dong, Zhang Xiao-gong, Ren Zhang. The time delay compensation method for the pressure sensors of FADS[J]. Aerospace Control, 2008, 26(6): 12-15.]
    [42] Matthew R, Trenton L, Haiyang C, et al. UAV attitude heading and wind estimation using GPS/INS and an air data system [C]. AIAA Guidance, Navigation, and Control Conference, Boston, USA, August 19-22, 2013.
    [43] Ellsworth J C, Whitmore S A. Simulation of a flush air-data system for transatmospheric vehicles[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 716-732.
    [44] 杨胜江,赵景朝,杨志红. 嵌入式大气数据传感与惯性导航信息融合方法研究[J]. 战术导弹技术, 2016, 2: 95-100. [Yang Sheng-jiang, Zhao Jing-chao, Yang Zhi-hong. Information fusion method of flush air data sensing system and inertial navigation[J].Tactical Missile Technology, 2016, 2: 95-100.]
    [45] Kelly G M, Findlay J T, Compton H R. Shuttle subsonic horizontal wind estimation[J]. Journal of Spacecraft and Rockets, 1983, 20(4): 390-397.
    [46] Langelaan J W, Alley N, Neidhoefer J. Wind field estimation for small unmanned aerial vehicles[J] Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1016-1030.
    [47] Arain B, Kendoul F. Real-time wind speed estimation and compensation for improved flight[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1599-1606.
    [48] Karlgaard C D, Beck R E, O’Keefe S A, et al. Mars entry atmospheric data system modeling and algorithm development [R]. AIAA 2009-3916, 2009.
    [49] Karlgaard C D,Schoenenberger M,Prasad M.Coupled inertial navigation and flush air data sensing algorithm for atmospheric estimation[C].AIAA Atiospheric Flight Mechanics Conference,Kissimmee,USA,January 5-9,2005.
    [50] 杨雷,侯砚泽,左光,等. 火星探测器进入飞行气动测量方法研究[J]. 力学学报, 2015, 47(1): 8-14. [Yang Lei, Hou Yan-ze, Zuo Guang, et al. Aerodynamic characteristics measurement of Mars vehicles during entry flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 8-14.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700