用户名: 密码: 验证码:
先进绝热压缩空气储能变工况运行特性建模及风储协同分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modelling the Off-design Operation Characteristics of Advanced Adiabatic Compressed Air Energy Storage and Cooperative Analysis of Hybrid Wind Power and Energy Storage System
  • 作者:李瑞 ; 陈来军 ; 梅生伟 ; 韩月峰 ; 薛小代
  • 英文作者:LI Rui;CHEN Laijun;MEI Shengwei;HAN Yuefeng;XUE Xiaodai;Department of Electrical Engineering, Tsinghua University;State Key Laboratory of Control and Simulation of Power Systems and Generation Equipments, Tsinghua University;Jintan Company of China Salt Corporation;School of QiDi (TUS) Renewable Energy, Qinghai University;
  • 关键词:风储协同系统 ; 先进绝热压缩空气储能 ; 变工况运行 ; 部分负载特性 ; 双荷电状态模型
  • 英文关键词:hybrid wind power and energy storage system;;advanced adiabatic compressed air energy storage;;off-design operation;;part-load characteristic;;dual state-of-charge(SOC) model
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:清华大学电机工程与应用电子技术系;电力系统及发电设备控制和仿真国家重点实验室清华大学;中盐金坛盐化有限责任公司;青海大学启迪新能源学院;
  • 出版日期:2019-04-28 11:35
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.657
  • 基金:国家自然科学基金创新研究群体科学基金资助项目(51621065);国家自然科学基金资助项目(51807101)~~
  • 语种:中文;
  • 页:DLXT201911004
  • 页数:10
  • CN:11
  • ISSN:32-1180/TP
  • 分类号:39-48
摘要
为准确分析压缩机、透平膨胀机、换热器等组件的部分负载特性对先进绝热压缩空气储能(AA-CAES)系统变工况运行性能的影响,详细分析了各组件的部分负载热力学特性及AA-CAES变工况特性。提出了包含储气库储气水平与高温储热罐储热水平的双荷电状态(SOC)模型。通过变工况特性曲线簇建立了储气SOC与储热SOC间的耦合关系,进而建立了计及组件部分负载特性的AA-CAES变工况运行模型,并对风储协同系统发电能力评估问题进行分析。仿真表明,AA-CAES变工况运行模式导致的组件部分负载特性对风储协同系统发电能力的影响不容忽视,与不考虑变工况相比,对风力资源丰富地区,变工况运行特性将使风储协同系统容量因子降低达4%以上。
        To investigate the impact of the part-load characteristics of internal components such as compressor, air turbine and heat exchanger on the off-design operation of advanced adiabatic compressed air energy storage(AA-CAES), detailed analysis on the part-load thermodynamics characteristic of each component and off-design operation of AA-CAES are performed. Dual state-of-charge(SOC) model is proposed including the gas storage level of the gas storage unit and the heat storage level of high-temperature thermal storage unit. With a set of off-design characteristic curves, coupling relationship between SOC of the thermal storage unit and SOC of the air storage unit is established. Thus an off-design operation model for the AA-CAES considering part-load characteristic of each component is established and estimation problem of wind power and energy storage hybrid system's generation capicity is analyzed. The simulation results show that the impact of part-load characteristics of each component resulting from the off-design operation of AA-CAES on the generation capacity of wind power and energy storage hybrid system cannot be ignored. Compared with the situation of ignoring off-design conditions, the capacity factor could discount over 4% caused by the off-design characteristics in the wind-rich areas.
引文
[1] 鲁宗相,李海波,乔颖.含高比例可再生能源电力系统灵活性规划及挑战[J].电力系统自动化,2016,40(13):147-158.LU Zongxiang,LI Haibo,QIAO Ying.Power system flexibility planning and challenges considering high proportion of renewable energy [J].Automation of Electric Power Systems,2016,40(13):147-158.
    [2] 伍俊,鲁宗相,乔颖,等.考虑储能动态充放电效率特性的风储电站运行优化[J].电力系统自动化,2018,42(11):41-47.DOI:10.7500/AEPS20180326002.WU Jun,LU Zongxiang,QIAO Ying,et al.Optimal operation of wind farm with hybrid storage devices considering efficiency characteristics of dynamic charging and discharging[J].Automation of Electric Power Systems,2018,42(11):41-47.DOI:10.7500/AEPS20180326002.
    [3] CHENG J,LI R,CHOOBINEH F,et al.Dispatchable generation of a novel compressed-air assisted wind turbine and its operation mechanism[J/OL].IEEE Transactions on Sustainable Energy [2018-11-23].https://ieeexplore.ieee.org/document/8543621.
    [4] MEI S,WANG J,TIAN F,et al.Design and engineering implementation of non-supplementary fired compressed air energy storage system:TICC-500[J].Science China Technological Sciences,2015,58(4):600-611.
    [5] GEISSBüHLER L,BECATTINI V,ZANGANEH G,et al.Pilot-scale demonstration of advanced adiabatic compressed air energy storage:Part 1 plant description and tests with sensible thermal-energy storage[J].Journal of Energy Storage,2018,17:129-139.
    [6] 梅生伟,李瑞,陈来军,等.先进绝热压缩空气储能技术研究进展及展望[J].中国电机工程学报,2018,38(10):2893-2907.MEI Shengwei,LI Rui,CHEN Laijun,et al.An overview and outlook on advanced adiabatic compressed air energy storage technique[J].Proceedings of the CSEE,2018,38(10):2893-2907.
    [7] TONG S,CHENG Z,CONG F,et al.Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage[J].Renewable Energy,2018,125:73-86.
    [8] PELAY U,LUO L,FAN Y,et al.Thermal energy storage systems for concentrated solar power plants[J].Renewable and Sustainable Energy Reviews,2017,79:82-100.
    [9] MEI S,LI R,XUE X,et al.Paving the way to smart micro energy grid:concepts,design principles,and engineering practices[J].CSEE Journal of Power and Energy Systems,2017,3(4):440-449.
    [10] SCIACOVELLI A,LI Y,CHEN H,et al.Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage-link between components performance and plant performance[J].Applied energy,2017,185:16-28.
    [11] ZHAO P,GAO L,WANG J,et al.Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines [J].Renewable Energy,2016,85:1164-1177.
    [12] ZHANG Y,YANG K,LI X,et al.The thermodynamic effect of thermal energy storage on compressed air energy storage system [J].Renewable Energy,2013,50:227-235.
    [13] KUSHNIR R,DAYAN A,ULLMANN A.Temperature and pressure variations within compressed air energy storage caverns[J].International Journal of Heat and Mass Transfer,2012,55(21-22):5616-5630.
    [14] RAJU M,KHAITAN S K.Modeling and simulation of compressed air storage in caverns:a case study of the Huntorf plant [J].Applied Energy,2012,89(1):474-481.
    [15] 李建林,田立亭,程林,等.考虑变工况特性的微能源系统优化规划:(一)基本模型和分析[J].电力系统自动化,2018,42(19):18-26.DOI:10.7500/AEPS20171218007.LI Jianlin,TIAN Liting,GHENG Lin,et al.Optimal planning of micro-energy system considering off-design performance:Part one a general model and analysis[J].Automation of Electric Power System,2018,42(19):18-26.DOI:10.7500/AEPS20171218007.
    [16] 田立亭,程林,李建林,等.考虑变工况特性的微能源系统优化规划:(二)优化模型及方法[J].电力系统自动化,2018,42(20):17-23.DOI:10.7500/AEPS20180207006.TIAN Liting,GHENG Lin,LI Jianlin,et al.Optimal planning of micro-energy system considering off-design performance:Part two optimization model and method[J].Automation of Electric Power System,2018,42(20):17-23.DOI:10.7500/AEPS20180207006.
    [17] SHAFIEE S,ZAREIPOUR H,KNIGHT A.Considering thermodynamic characteristics of a CAES facility in self-scheduling in energy and reserve markets[J].IEEE Transactions on Smart Grid,2018,9(4):3476- 3485.
    [18] ZHAN J,ANSARI O A,CHUNG C Y.Compressed air energy storage:Part Ⅰ an accurate bi-linear cavern model [EB/OL].[2018-08-25].https://arxiv.org/abs/1709.08272.
    [19] 李姚旺,苗世洪,尹斌鑫,等.考虑先进绝热压缩空气储能电站备用特性的电力系统优化调度策略[J].中国电机工程学报,2018,38(18):5392-5404.LI Yaowang,MIAO Shihong,YIN Binxin,et al.Power system optimal scheduling strategy considering reserve characteristics of advanced adiabatic compressed air energy storage plant[J].Proceedings of the CSEE,2018,38(18):5392-5404.
    [20] LI R,CHEN L,YUAN T,et al.Optimal dispatch of zero-carbon-emission micro Energy Internet integrated with non-supplementary fired compressed air energy storage system[J].Journal of Modern Power Systems and Clean Energy,2016,4(4):566-580.
    [21] DANESHI H,SRIVASTAVA A K.Security-constrained unit commitment with wind generation and compressed air energy storage[J].IET Generation,Transmission & Distribution,2012,6(2):167-175.
    [22] BERGMAN T L,INCROPERA F P,DEWITT D P,et al.Fundamentals of heat and mass transfer [M].John Wiley & Sons,2011.
    [23] STETA F D S.Modeling of an advanced adiabatic compressed air energy storage (AA-CAES) unit and an optimal model-based operation strategy for its integration into power markets [D].Zurich:EEH Power Systems Laboratory Swiss Federal Institute of Technology,2010.
    [24] HAN Z,GUO S.Investigation of operation strategy of combined cooling,heating and power (CCHP) system based on advanced adiabatic compressed air energy storage [J].Energy,2018,160:290-308.
    [25] CHEN X,LV J,MCELROY M B,et al.Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies[J].IEEE Transactions on Power Systems,2018,33(6):6240-6253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700