用户名: 密码: 验证码:
Possible giant metamorphic core complex
详细信息   在线全文   PDF全文下载
  • journal_title:Geological Society of America Bulletin
  • Contributor:Jon E. Spencer
  • Publisher:Geological Society of America
  • Date:2001-
  • Format:text/html
  • Language:en
  • Identifier:10.1130/0016-7606(2001)113<0333:PGMCCA>2.0.CO;2
  • journal_abbrev:Geological Society of America Bulletin
  • issn:0016-7606
  • volume:113
  • issue:3
  • firstpage:333
摘要

Hundreds of circular features on Venus known as coronae are characterized by annular fractures and commonly associated radial fractures and lava flows. Coronae are thought to have been produced by buoyant mantle diapirs that flatten and spread at the base of the lithosphere and cause fracturing, uplift, and magmatism. The interior of Artemis Corona, by far the largest corona at 2100 km diameter, is divided in half by a northeast-trending deformation belt that contains numerous rounded ridges resembling antiforms. The largest of these ridges, located at the center of Artemis Corona, is ∼5 km high on its steep northwest flank where it is adjacent to a flat-bottomed, 10-km-wide trough interpreted as a rift valley. The 280-km-long antiformal ridge is marked by perpendicular grooves that cross the ∼50-km-wide ridge and extend southeastward as far as 120 km across adjacent plains. The grooves abruptly terminate northwestward at the rift trough. The large antiformal ridge terminates southwestward at a transform shear zone that parallels the grooves. These features—rift valley, antiformal uplift, grooves, and transform shear zone—are morphologically and geometrically similar to grooved, elevated, submarine metamorphic core complexes on the inside corners of ridge-transform intersections of slow-spreading ridges on Earth. As with submarine core complexes, the grooved surface on Venus is interpreted as the footwall of a large-displacement normal fault, and the grooves are inferred to be the product of plastic molding of the footwall to irregularities on the underside of the hanging wall followed by tectonic exhumation of the molded grooves and conveyer-belt–like transport up and over the large antiform and across the southeastern plains. According to this interpretation, the trend of the grooves records the direction of extension, which is perpendicular to the thrusts at the leading edge of the annular thrust belt 1000 km to the southeast. Both may have formed at the same time as a result of uniform southeastward displacement of the southeastern half of the interior of Artemis Corona. The location of this grooved core complex at the center of Artemis Corona may reflect genesis above the buoyant, ascending tail of the corona-producing mantle diapir.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700