用户名: 密码: 验证码:
Model for how microbial methane generation can preser
详细信息   在线全文   PDF全文下载
摘要

In some dolomite and limestone hydrocarbon reservoirs, protection from cementation is a primary factor in porosity preservation. We present a model in which methanogens (methane-producing microorganisms) produce methane gas (CH4[g]) that outgasses from solution in pore space, creating a two-phase system that reduces effective hydraulic conductivity (K), protecting pore space from cementation. Methanogens have been implicated in dolomite formation and can generate methane to fill pore space of a model near-surface carbonate sediment (37.5% primary porosity) with CH4(g) in 180 to 4650 yr, depending on nutrient levels. Gas generation results in occlusion of the aqueous phase from pore spaces and throats, creating a two-phase flow regime, reducing the effective hydraulic conductivity of model marine carbonate sand by about 50% (from 2.8 to 1.2 cm/day) in as little as 55 yr, therefore reducing aqueous fluid flow necessary for cementation.

Despite rapid burial and complete cessation of methanogenesis, effective hydraulic conductivity could take more than 100,000 yr to return to its original value. If methanogenesis continues with burial, the effective hydraulic conductivity is reduced to zero (after 250 yr). Dolomites can preserve more primary porosity with depth than other carbonates. We propose that, in addition to increased structural resistance, a biogenic model exists for porosity preservation in dolomites that is linked to the activity of methanogens. This model represents specific end-member cases and illustrates the effect of methane buildup in relationship to the extent of reservoir diagenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700