用户名: 密码: 验证码:
Seismic imaging of complex onshore structures by 2
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Romain Brossier ; Stéphane Operto ; Jean Virieux
  • Publisher:Society of Exploration Geophysicists
  • Date:2009-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.3215771
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:74
  • issue:6
  • firstpage:WCC105
  • section:FULL-WAVEFORM INVERSION
摘要

Quantitative imaging of the elastic properties of the subsurface at depth is essential for civil engineering applications and oil- and gas-reservoir characterization. A realistic synthetic example provides for an assessment of the potential and limits of 2D elastic full-waveform inversion (FWI) of wide-aperture seismic data for recovering high-resolution P- and S-wave velocity models of complex onshore structures. FWI of land data is challenging because of the increased nonlinearity introduced by free-surface effects such as the propagation of surface waves in the heterogeneous near-surface. Moreover, the short wavelengths of the shear wavefield require an accurate S-wave velocity starting model if low frequencies are unavailable in the data. We evaluated different multiscale strategies with the aim of mitigating the nonlinearities. Massively parallel full-waveform inversion was implemented in the frequency domain. The numerical optimization relies on a limited-memory quasi-Newton algorithm thatoutperforms the more classic preconditioned conjugate-gradient algorithm. The forward problem is based upon a discontinuous Galerkin (DG) method on triangular mesh, which allows accurate modeling of free-surface effects. Sequential inversions of increasing frequencies define the most natural level of hierarchy in multiscale imaging. In the case of land data involving surface waves, the regularization introduced by hierarchical frequency inversions is not enough for adequate convergence of the inversion. A second level of hierarchy implemented with complex-valued frequencies is necessary and provides convergence of the inversion toward acceptable P- and S-wave velocity models. Among the possible strategies for sampling frequencies in the inversion, successive inversions of slightly overlapping frequency groups is the most reliable when compared to the more standard sequential inversion of single frequencies. This suggests that simultaneous inversion of multiple frequencies is critical when considering complex wave phenomena.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700