用户名: 密码: 验证码:
Discontinuous Galerkin methods for w
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Josep de la Puente ; Michael Dumbser ; Martin Käser ; Heiner Igel
  • Publisher:Society of Exploration Geophysicists
  • Date:2008-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.2965027
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:73
  • issue:5
  • firstpage:T77
  • section:SEISMIC MODELING AND WAVE PROPAGATION
摘要

We have developed a new numerical method to solve the heterogeneous poroelastic wave equations in bounded three-dimensional domains. This method is a discontinuous Galerkin method that achieves arbitrary high-order accuracy on unstructured tetrahedral meshes for the low-frequency range and the inviscid case. By using Biot's equations and Darcy's dynamic laws, we have built a scheme that can successfully model wave propagation in fluid-saturated porous media when anisotropy of the pore structure is allowed. Zero-inflow fluxes are used as absorbing boundary conditions. A continuous arbitrary high-order derivatives time integration is used for the high-frequency inviscid case, whereas a space-time discontinuous scheme is applied for the low-frequency case. We conducted a numerical convergence test of the proposed methods. We used a series of examples to quantify the quality of our numerical results, comparing them to analytic solutions as well as numerical solutions obtained by other methodologies. In particular, a large scale 3D reservoir model showed the method's suitability to solve poroelastic wave-propagation problems for complex geometries using unstructured tetrahedral meshes. The resulting method is proved to be high-order accurate in space and time, stable for the low-frequency case, and asymptotically consistent with the diffusion limit.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700