用户名: 密码: 验证码:
Simulations for the Development of Thermoelectric Measurements
详细信息    查看全文
  • 作者:Knud Zabrocki (1)
    Pawel Ziolkowski (1)
    Titas Dasgupta (1)
    Johannes de Boor (1)
    Eckhard Müller (1)
  • 关键词:Measurement of thermoelectric properties ; electrical resistivity/conductivity measurement ; error correction ; finite ; element modeling ; ANSYS
  • 刊名:Journal of Electronic Materials
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:42
  • 期:7
  • 页码:2402-2408
  • 全文大小:563KB
  • 参考文献:1. S.W. Angrist, / Direct Energy Conversion (Boston: Allyn and Bacon, 1965)
    2. G.W. Sutton (ed.), / Direct Energy Conversion, Inter-University Electronics Series, Vol. 3 (New York: McGraw-Hill Book, 1966)
    3. R. Decher, / Direct Energy Conversion (Oxford: Oxford University Press, 1997).
    4. L.I. Anatychuk, / Physics of Thermoelectricity, Vol. 1 (Ukraine: Institute of Thermoelectricity, 1998)
    5. G. Nolas, J. Sharp, and H. Goldsmid, / Thermoelectrics: Basic Principles and New Materials Development, Springer Series in Material Science, Vol. 45 (Berlin: Springer, 2001)
    6. M.G. Kanatzidis, S. Mahanti, and T. Hogan, / Chemistry, Physics and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride. Fundamental Materials Research (New York: Kluwer, 2003) CrossRef
    7. L. Anatychuk, / Thermoelectric Power Converters, Vol. 2 (Kyiv-Chernivtsi, Ukraine: Institute of Thermoelectricity, 2003)
    8. L.E. Bell, / Science 321, 1457 (2008). doi:10.1126/science.1158899 , http://www.sciencemag.org/cgi/content/abstract/321/5895/1457
    9. H.J. Goldsmid, / Introduction to Thermoelectricity (New York: Springer, 2009) CrossRef
    10. D.M. Rowe (ed.), / CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC Press, 1995).
    11. D.M. Rowe (ed.), / CRC Handbook of Thermoelectrics: Macro to Nano (Boca Raton, FL: CRC Press, 2006)
    12. D.M. Rowe (ed.), / Materials, Preparation, and Characterization in Thermoelectrics, / Thermoelectrics and its energy harvesting, Vol. 1 (Boca Raton, FL: CRC Press, 2012).
    13. D.M. Rowe (ed.), / Moduls, Systems, and Applications in Thermoelectrics, / Thermoelectrics and its Energy Harvesting, Vol. 2 (Boca Raton, FL: CRC Press, 2012)
    14. J. Martin, T. Tritt, and C. Uher, / J. Appl. Phys., 108, 121101 (2010). doi:10.1063/1.3503505
    15. J. Martin, / J. Res. Nat. Inst. Stand. Technol., 117, 168 (2012). doi:10.6028/jres.117.009 CrossRef
    16. J. Martin, / Rev. Sci. Instrum., 83, 065101 (2012) CrossRef
    17. J. de Boor, C. Stiewe, P. Ziolkowski, T. Dasgupta, G. Karpinski, E. Lenz, F. Edler, and E. Müller, / J. Electron. Mater. (2013). doi:10.1007/s11664-012-2404-z
    18. E.E. Antonova and D.C. Looman, / 24th International Conference on Thermoelectrics, 2005 - ICT 2005 (2005), pp. 215-18. doi:10.1109/ICT.2005.1519922
    19. M. Freunek, M. Müller, T. Ungan, W. Walker, and L.M. Reindl, / J. Electron. Mater. 38, 1214 (2009). doi:10.1007/s11664-009-0665-y , http://www.springerlink.com/content/n7g93r41u5611388
    20. D. Ebling, K. Bartholomé, M. Bartel, and M. J?gle, / J. Electron. Mater. 39, 1376 (2010) doi:10.1007/s11664-010-1331-0 CrossRef
    21. P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Müller, / J. Electron. Mater. 39, 1934 (2010). doi:10.1007/s11664-009-1048-0 CrossRef
    22. E. Sandoz-Rosado and R. Stevens, / J. Electron. Mater., 39, 1848 (2010) doi:10.1007/s11664-010-1077-8 CrossRef
    23. V.S.K.G. Kelekanjeri, Ph.D. thesis, Georgia Institute of Technology, School of Material Science and Engineering (2007)
    24. V.S.K.G. Kelekanjeri and R.A. Gerhardt, / Meas. Sci. Technol., 19, 025701 (2008). doi: 10.1088/0957-0233/9/2/025701
    25. E.B. Hansen, / Appl. Sci. Res. B 8, 93 (1960), doi:10.1007/BF02920047 CrossRef
    26. J. Jeans, / The Mathematical Theory of Electricity and Magnetism (Cambridge: Cambridge University Press, 1908)
    27. L.B. Valdes, / Proc. IRE, 40, 1429 (1952). doi:10.1109/JRPROC.1952.273975 CrossRef
    28. L.B. Valdes, / Proc. Inst. Radio Eng., 42, 420 (1954)
    29. A. Uhlir Jr., / Bell Syst. Tech. J., 34, 105 (1955). http://www.alcatel-lucent.com/bstj/vol34-1955/articles/bstj34-1-105.pdf
    30. F.M. Smits, / Bell Syst. Tech. J., 37, 711 (1958). http://www.alcatel-lucent.com/bstj/vol37-1958/articles/bstj37-3-711.pdf
    31. M. Yamashita, / Meas. Sci. Technol., 17, 3323 (2006). doi:10.1088/0957-0233/17/12/019 CrossRef
    32. E.J. Zimney, G.H.B. Dommett, R.S. Ruoff, and D.A. Dikin, / Meas. Sci. Technol., 18, 2067 (2007). doi:10.1088/0957-0233/18/7/037 CrossRef
    33. X. Huang, C. Gao, M. Li, C. He, A. Hao, D. Zhang, C. Yu, Y. Wang, C. Sang, X. Cui, and G. Zou, / J. Appl. Phys., 101, 064904 (2007). doi:10.1063/1.2712173 .
    34. J. Yang, G. Peng, Y. Han, and C. Gao, / AIP Adv. , 1, 032116 (2011) CrossRef
    35. N. Bowler, / Meas. Sci. Technol., 22, 012001 (2011). doi:10.1088/0957-0233/22/1/012001
    36. J. Náhlík, I. Ka?párková, and P. Fitl, / Rev. Sci. Instrum. 83, 074701 (2012). doi:10.1063/1.4731654 CrossRef
    37. K. Stecker and M. Teubner, / Wissenschaftliche Zeitschrift der Universit?t Halle 16, 1 (1967)
    38. M.A. Kaganov, / Soviet Phys.-Techn. Phys., 3, 2169 (1958)
    39. W.F.G. Swann, / J. Franklin Inst., 267, 363 (1959). doi:10.1016/0016-0032(59)90090-0 CrossRef
    40. W.F.G. Swann, / J. Franklin Inst., 268, 294 (1959). doi:10.1016/0016-0032(59)90491-0 CrossRef
  • 作者单位:Knud Zabrocki (1)
    Pawel Ziolkowski (1)
    Titas Dasgupta (1)
    Johannes de Boor (1)
    Eckhard Müller (1)

    1. German Aerospace Center (DLR), Institute of Materials Research, Thermoelectric Materials and Systems, Linder H?he, 51147, Cologne, Germany
  • ISSN:1543-186X
文摘
In thermoelectricity, continuum theoretical equations are usually used for the calculation of the characteristics and performance of thermoelectric elements, modules or devices as a function of external parameters (material, geometry, temperatures, current, flow, load, etc.). An increasing number of commercial software packages aimed at applications, such as COMSOL and ANSYS, contain vkernels using direct thermoelectric coupling. Application of these numerical tools also allows analysis of physical measurement conditions and can lead to specifically adapted methods for developing special test equipment required for the determination of TE material and module properties. System-theoretical and simulation-based considerations of favorable geometries are taken into account to create draft sketches in the development of such measurement systems. Particular consideration is given to the development of transient measurement methods, which have great advantages compared with the conventional static methods in terms of the measurement duration required. In this paper the benefits of using numerical tools in designing measurement facilities are shown using two examples. The first is the determination of geometric correction factors in four-point probe measurement of electrical conductivity, whereas the second example is focused on the so-called combined thermoelectric measurement (CTEM) system, where all thermoelectric material properties (Seebeck coefficient, electrical and thermal conductivity, and Harman measurement of zT) are measured in a combined way. Here, we want to highlight especially the measurement of thermal conductivity in a transient mode. Factors influencing the measurement results such as coupling to the environment due to radiation, heat losses via the mounting of the probe head, as well as contact resistance between the sample and sample holder are illustrated, analyzed, and discussed. By employing the results of the simulations, we have developed an improved sample head that allows for measurements over a larger temperature interval with enhanced accuracy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700