用户名: 密码: 验证码:
Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review
详细信息    查看全文
  • 作者:Ke Xing (1)
    Xiao Zhu (1)
    Xue Peng (1)
    Sheng Qin (2)

    1. School of Life Science
    ; Jiangsu Normal University ; Xuzhou ; 221116 ; Jiangsu ; People鈥檚 Republic of China
    2. The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province
    ; Jiangsu Normal University ; Xuzhou ; 221116 ; Jiangsu ; People鈥檚 Republic of China
  • 关键词:Chitosan ; Plant diseases ; Antimicrobial ; Defense responses ; Signal transduction ; Agriculture
  • 刊名:Agronomy for Sustainable Development
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:35
  • 期:2
  • 页码:569-588
  • 全文大小:1,376 KB
  • 参考文献:1. Abbasi, NA, Iqbal, Z, Maqbool, M, Hafiz, IA (2009) Postharvest quality of mango (Mangifera indica L.) fruit as affected by chitosan coating. Pak J Bot 41: pp. 343-357
    2. Abro, MA, Lecompte, F, Bardin, M, Nicot, PC (2013) Nitrogen fertilization impacts biocontrol of tomato gray mold. Agron Sustain Dev.
    3. Allan, CR, Hadwiger, LA (1979) The fungicidal effect of chitosan on fungi of varying cell composition. Exp Mycol 3: pp. 285-287
    4. Alvarez, MV, Ponce, AG, Moreira, MR (2013) Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT - Food Sci Technol 50: pp. 78-87
    5. Amborab茅, B-E, Bonmort, J, Fleurat-Lessard, P, Roblin, G (2008) Early events induced by chitosan on plant cells. J Exp Bot 59: pp. 2317-2324
    6. Atanasova-Penichon, V, Pons, S, Pinson-Gadais, L, Picot, A, Marchegay, G, Bonnin-Verdal, MN, Ducos, C, Barreau, C, Roucolle, J, Sehabiague, P, Carolo, P, Richard-Forget, F (2012) Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Mol Plant Microbe Interact 25: pp. 1605-1616
    7. Atkinson, HA, Daniels, A, Read, ND (2002) Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 37: pp. 233-244
    8. Awadalla, OA, Mahmoud, YA-G (2005) New chitosan derivatives induced resistance to Fusarium wilt disease through phytoalexin (Gossypol) production. Sains Malays 34: pp. 141-146
    9. Aziz, A, Trotel-Aziz, P, Dhuicq, L, Jeandet, P, Couderchet, M, Vernet, G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96: pp. 1188-1194
    10. Badawy, ME, Rabea, EI, Taktak, NE (2014) Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens. Carbohydr Polym 111: pp. 670-682
    11. Benhamou, N (1992) Ultrastructural and cytochemical aspects of chitosan on Fusarium oxysporum f. sp. radices-lycopersici, agent of tomato crown and root rot. Phytopathology 82: pp. 1185-1193
    12. Benhamou, N (1996) Elicitor-induced plant defence pathways. Trends Plant Sci 1: pp. 233-240
    13. Bernards, MA, Fleming, WD, Llewellyn, DB, Priefer, R, Yang, XL, Sabatino, A, Plourde, GL (1999) Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 121: pp. 135-146
    14. Bhaskara Reddy, MV, Arul, J, Angers, P, Couture, L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem 47: pp. 1208-1216
    15. Bhatnagar, A, Sillanp盲盲, M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater鈥攁 short review. Adv Colloid Interfac 152: pp. 26-38
    16. Blume, B, N眉rnberger, T, Nass, N, Scheel, D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12: pp. 1425-1440
    17. Bol, JF, Linthorst, HJM, Cornelissen, BJC (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28: pp. 113-138
    18. Borsani, O, Valpuesta, V, Botella, MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126: pp. 1024-1030
    19. Chatterjee, S, Chatterjee, BP, Guha, AK (2014) A study an antifungal activity of water-soluble chitosan against Macrophomina phaseolina. Int J Biol Macromol 67: pp. 452-457
    20. Chen, YP (2008) Isatis indigotica seedlings derived from laser stimulated seeds showed improved resistance to elevated UV-B. Plant Growth Regul 55: pp. 73-79
    21. Chen, C, Belanger, RR, Benhamou, N, Paulitz, TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant P 56: pp. 13-23
    22. Chirkov, SN (2002) The antiviral activity of chitosan. Appl Biochem Micro 38: pp. 1-8
    23. Chirkov, SN, Il鈥檌na, AV, Surgucheva, NA, Letunova, EV, Varitsev, YA, Tatarinova, NY, Varlamov, VP (2001) Effect of chitosan on systemic viral infection and some defense responses in potato plants. Russ J Plant Physl 48: pp. 774-779
    24. Chisholm, ST, Coaker, G, Day, B, Staskawicz, BJ (2006) Host鈥搈icrobe interactions: shaping the evolution of the plant immune response. Cell 124: pp. 803-814
    25. Chung, YC, Chen, CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technol 99: pp. 2806-2814
    26. Chung, YC, Su, YP, Chen, CC, Jia, G, Wang, HL, Wu, JC, Lin, JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25: pp. 932-936
    27. Come, V, Deschamps, A, Mertial, A (2003) Bioactive packaging materials from edible chitosan polymer-antimicrobial activity assessment on dairy-related contaminants. J Food Sci 68: pp. 2788-2792
    28. Cota-Arriola, O, Cortez-Rocha, MO, Burgos-Hern谩ndez, A, Ezquerra-Brauer, JM, Plascencia-Jatomea, M (2013) Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric 93: pp. 1525-1536
    29. Dang, QF, Yan, JQ, Li, Y, Cheng, XJ, Liu, CS, Chen, XG (2010) Chitosan acetate as an active coating material and its effects on the storing of Prunus avium L. J Food Sci 75: pp. S125-S131
    30. Davydova, VN, Naqorskaia, VP, Gorbach, VI, Kalitnik, AA, Reunov, AV, Solov鈥檈va, TF, Ermak, IM (2011) Chitosan antiviral activity: dependence on structure and depolymerization method. Prikl Biokhim Mikrobiol 47: pp. 113-118
    31. Djioua, T, Charles, F, Freire, M, Filgueiras, H, Ducamp-Collin, MN, Sallanon, H (2010) Combined effects of postharvest heat treatment and chitosan coating on quality of fresh-cut mangoes (Mangifera indica L.). Int J Food Sci Tech 45: pp. 849-855
    32. Dodane, V, Vilivalam, VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol To 1: pp. 246-253
    33. Du, WL, Niu, SS, Xu, YL, Xu, ZR, Fan, CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75: pp. 385-389
    34. Dumas-Gaudot, E, Slezak, S, Dassi, B, Pozo, MJ, Gianinazzi-Pearson, V, Gianinazzi, S (1996) Plant hydrolytic enzymes (chitinases and 脽鈥?,3 glucanases) in root reactions to pathogenic and symbiotic microorganisms. Plant Soil 185: pp. 211-221
    35. Dutta, PK, Tripathi, S, Mehrotra, GK, Dutta, J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114: pp. 1173-1182
    36. Eilenberg, H, Pnini-Cohen, S, Rahamim, Y, Sionov, E, Segal, E, Carmeli, S, Zilberstein, A (2010) Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 61: pp. 911-922
    37. El-Ghaouth, A, Arul, J, Grenier, J, Asselin, A (1992) Antifungal activity of chitosan on two post-harvest pathogens of strawberry fruits. Phytopathology 82: pp. 398-402
    38. El-Ghaouth, A, Arul, J, Grenier, J, Benhamou, N, Asselin, A, Belanger, R (1994) Effect of chitosan on cucumber plants: suppression of Pythium aphinodermatum and induction of defense reactions. Phytopathology 84: pp. 313-320
    39. El-Hadrami, A, Adam, LR, El-Hadrami, I, Daayf, F (2010) Chitosan in plant protection. Mar Drugs 8: pp. 968-987
    40. El-Hassni, M, El-Hadrami, A, Daayf, F, Barka, EA, El-Hadrami, I (2004) Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathol Mediterr 43: pp. 195-204
    41. Elsenhans, B, Blume, R, Lembcke, B, Caspary, WF (1983) A new class of inhibitors for in vitro small intestinal transport of sugars and amino acids in the rat. Biochim Biophys Acta 727: pp. 135-143
    42. Farouk, S, Mosa, AA, Taha, AA, Ibrahim, HM, EL-Gahmery, AM (2011) Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. J Stress Physiol Bioch 7: pp. 99-116
    43. Fitza, KNE, Payn, KG, Steenkamp, ET, Myburg, AA, Naidoo, S (2013) Chitosan application improves resistance to Fusarium circinatum in Pinus patula. S Afr J Bot 85: pp. 70-78
    44. Fondevilla, S, Rubiales, D (2012) Powdery mildew control in pea. A review. Agron Sustain Dev 32: pp. 401-409
    45. Galv谩n, MI, Akuaku, J, Cruz, I, Cheetham, J, Golshani, A, Smith, ML (2013) Disruption of protein synthesis as antifungal mode of action by chitosan. Int J Food Microbiol 164: pp. 108-112
    46. Garc铆a-Rinc贸na, J, Vega-P茅rezb, J, Guerra-S谩nchezb, MG, Hern谩ndez-Lauzardoa, AN, Pe帽a-D铆azc, A, Vel谩zquez-Del Vallea, MG (2010) Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Pestic Biochem Phys 97: pp. 275-278
    47. Geisberger, G, Gyenge, EB, Hinger, D, K盲ch, A, Maake, C, Patzke, GR (2013) Chitosan-thioglycolic acid as a versatile antimicrobial agent. Biomacromolecules 14: pp. 1010-1017
    48. Goy, RC, Britto, D, Assis, OBG (2009) A review of the antimicrobial activity of chitosan. Pol铆meros 19: pp. 241-247
    49. Grant, M, Brown, I, Adams, S, Knight, M, Ainslie, A, Mansfield, J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23: pp. 441-450
    50. Guan, YJ, Hu, J, Wang, XJ, Shao, CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10: pp. 427-433
    51. Guo, ZY, Chen, R, Xing, RE, Liu, S, Yu, HH, Wang, PB, Li, CP, Li, PC (2006) Novel derivatives of chitosan and their antifungal activities in vitro. Carbohyd Res 341: pp. 351-354
    52. Hadwiger, LA (1999) Host-parasite interactions: elicitation of defense responses in plants with chitosan. EXS 87: pp. 185-200
    53. Hadwiger, LA (2008) Pea-Fusarium solani interactions contributions of a system toward understanding disease resistance. Phytopathology 98: pp. 372-379
    54. Hadwiger, LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208: pp. 42-49
    55. Hadwiger LA. Klosterman SK. Chang MM. Friel P. Hosick HL (1997) Chitosan heptamer alters DNA, induces defense genes in plants and induces the accumulation of gene p53 product in animal cells. In: Domard A, Roberts GAF, Varum KM (eds.) In Advances in Chitin Science. Jacques Andre Publisher, Lyon, vol. II, pp102-109
    56. Hadwiger, LA, Beckman, JM (1980) Chtosan as a component of Pea-Fusarium solani interactions. Plant Physiol 66: pp. 205-211
    57. Hadwiger, LA, Chiang, C, Victory, S, Horovitz, D (1989) Chitin and chitosan: sources, chemistry, biochemistry, physical properties and applications. Elsevier Applied Science, London
    58. Halim, VA, Vess, A, Scheel, D, Rosahl, S (2006) The role of salicylic acid and jasmonic acid in pathogen defence. Plant Biol 8: pp. 307-313
    59. Helander, IM, Nurmiaho-Lassila, EL, Ahvenainen, R, Rhoades, J, Roller, S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71: pp. 235-244
    60. Hemaiswarya, S, Soudaminikkutty, R, Narasumani, ML, Doble, M (2011) Phenylpropanoids inhibit protofilament formation of Escherichia coli cell division protein FtsZ. J Med Microbiol 60: pp. 1317-1325
    61. Hoat, TX, Nakayashiki, H, Yang, Q, Tosa, Y, Mayama, S (2013) Molecular cloning of the apoptosis-related calcium-binding protein AsALG-2 in Avena sativa. Mol Plant Pathol 14: pp. 222-229
    62. Hsu, SH, Chang, YB, Tsai, CL, Fu, KY, Wang, SH, Tseng, HJ (2011) Characterization and biocompatibility of chitosan nanocomposites. Colloid Surface B 85: pp. 198-206
    63. Hu, Y, Cai, J, Du, YM, Lin, JG, Wang, CG, Xiong, KJ (2009) Preparation and anti-TMV activity of guanidinylated chitosan hydrochloride. J Appl Polym Sci 112: pp. 3522-3528
    64. Iriti, M, Faoro, F (2008) Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol Biochem 46: pp. 1106-1111
    65. Iriti, M, Faoro, F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4: pp. 66-68
    66. Iriti, M, Sironi, M, Gomarasca, S, Casazza, AP, Soave, C, Faoro, F (2006) Cell death-mediated antiviral effect of chitosan in tobacco. Plant Physiol Biochem 44: pp. 893-900
    67. Isaac, J, Hartney, SL, Druffel, K, Hadwiger, LA (2009) The non-host disease resistance response in peas; alterations in phosphorylation and ubiquitination of HMG A and histones H2A/H2B. Plant Sci 177: pp. 439-449
    68. Issam, ST, Adele, MG, Adele, CP, Stephane, G, Veronique, C (2005) Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J Food Sci 70: pp. 100-104
    69. Jabeen, N, Ahmad, R (2013) The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. J Sci Food Agric 93: pp. 1699-1705
    70. Je, JY, Kim, SK (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54: pp. 6629-6633
    71. Karthikeyan, M, Jayakumar, V, Radhika, K, Bhaskaran, R, Velazhahan, R, Alice, D (2005) Induction of resistance in host against the infection of leaf blight pathogen (Alternaria palandui) in onion (Allium cepa var aggregatum). Indian J Biochem Biophys 42: pp. 371-377
    72. Khan, W, Prithiviraj, B, Smith, DL (2003) Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160: pp. 859-863
    73. Kim, HJ, Chen, F, Wang, X, Rajapakse, NC (2005) Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J Agric Food Chem 53: pp. 3696-3701
    74. Kim, H, Tator, CH, Shoichet, MS (2011) Chitosan implants in the rat spinal cord: biocompatibility and biodegradation. J Biomed Mater Res A 97: pp. 395-404
    75. Kl眉sener, B, Young, JJ, Murata, Y, Allen, GJ, Mori, IC, Hugouvieux, V, Schroeder, JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130: pp. 2152-2163
    76. Koers, S, Guzel-Deger, A, Marten, I, Roelfsema, MR (2011) Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. Plant J 68: pp. 670-680
    77. K枚hle, H, Jeblick, W, Poten, F, Blaschek, W, Kauss, H (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 77: pp. 544-551
    78. Komaraiah, P, Ramakrishna, SV, Reddanna, P, Kavi Kishor, PB (2003) Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. J Biotechnol 101: pp. 181-187
    79. Kong, M, Chen, XG, Liu, CS, Liu, CG, Meng, XH, Yu, LJ (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloid Surface B 65: pp. 197-202
    80. Kong, M, Chen, XG, Xing, K, Park, HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144: pp. 51-63
    81. Lamattina, L, Garcia-Mata, C, Graziano, M, Pagnussat, G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54: pp. 109-136
    82. Lambert, PA (2002) Cellular impermeability and uptake of biocides and antibiotics in gram-positive bacteria and mycobacteria. J Appl Microbiol 31: pp. 46S-54S
    83. Lee, DS, Je, JY (2013) Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J Agric Food Chem 61: pp. 6574-6579
    84. Li, L, Steffens, JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215: pp. 239-247
    85. Li, SJ, Zhu, TH (2013) Biochemical response and induced resistance against anthracnose (Colletotrichum camelliae) of camellia (Camellia pitardii) by chitosan oligosaccharide application. For Path 43: pp. 67-76
    86. Li, B, Wang, X, Chen, RX, Huangfu, WG, Xie, GL (2008) Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohyd Polym 72: pp. 287-292
    87. Li, B, Liu, BP, Shan, CL, Ibrahim, M, Lou, YH, Wang, YL, Xie, GL, Li, HY, Sun, GC (2013) Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Pest Manag Sci 69: pp. 312-320
    88. Li, B, Shi, Y, Shan, CL, Zhou, Q, Ibrahim, M, Wang, YL, Wu, GX, Li, HY, Xie, GL, Sun, GC (2013) Effect of chitosan solution on the inhibition of Acidovorax citrulli causing bacterial fruit blotch of watermelon. J Sci Food Agric 93: pp. 1010-1015
    89. Li, XS, Min, M, Du, N, Gu, Y, Hode, T, Naylor, M, Chen, D, Nordquist, RE, Chen, WR (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013: pp. 1-8
    90. Liang, C, Yuan, F, Liu, F, Wang, Y, Gao, Y (2014) Structure and antimicrobial mechanism of 蔚-polylysine-chitosan conjugates through Maillard reaction. Int J Biol Macromol.
    91. Li茅nart, Y, Gautier, C, Domard, A (1991) Isolation from Rubus cell-suspension cultures of a lectin specific for glucosamine oligomers. Planta 184: pp. 8-13
    92. Lin, W, Hu, X, Zhang, W, Rogers, WJ, Cai, W (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162: pp. 937-944
    93. Liu, XF, Guan, YL, Yang, DZ, Li, Z, Yao, KD (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79: pp. 1324-1335
    94. Liu, H, Du, YM, Wang, XH, Sun, LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95: pp. 147-155
    95. Liu, W, Sun, S, Cao, Z, Zhang, X, Yao, K, Lu, WW, Luk, KD (2005) An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 26: pp. 2705-2711
    96. Liu, H, Tian, WX, Li, B, Wu, GX, Ibrahim, M, Tao, ZY, Wang, YL, Xie, GL, Li, HY, Sun, GC (2012) Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol Lett 34: pp. 2291-2298
    97. Lou, MM, Zhu, B, Muhammad, I, Li, B, Xie, GL, Wang, YL, Li, HY, Sun, GC (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohyd Res 346: pp. 1294-1301
    98. Luna, E, Pastor, V, Robert, J, Flors, V, Mauch-Mani, B, Ton, J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact 24: pp. 183-193
    99. Ma, ZX, Yang, LY, Yan, HX, Kennedy, JF, Meng, XH (2013) Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr Polym 94: pp. 272-277
    100. MacDonald, MJ, D鈥機unha, GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85: pp. 273-282
    101. Madihally, SV, Matthew, HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20: pp. 1133-1142
    102. Malerba, M, Crosti, P, Cerana, R (2012) Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma 249: pp. 89-98
    103. Manjunatha, G, Roopa, KS, Prashanth, GN, Shetty, HS (2008) Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation. Pest Manag Sci 64: pp. 1250-1257
    104. Manjunatha, G, Niranjan-Raj, S, Prashanth, GN, Deepak, S, Amruthesh, KN, Shetty, HS (2009) Nitric oxide is involved in chitosan-induced systemic resistance in pearl millet against downy mildew disease. Pest Manag Sci 65: pp. 737-743
    105. Mansilla, AY, Albertengo, L, Rodr铆guez, MS, Debbaudt, A, Z煤帽iga, A, Casalongu茅, CA (2013) Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl Microbiol Biotechnol 97: pp. 6957-6966
    106. Mej铆a-Teniente, L, Duran-Flores, FD, Chapa-Oliver, AM, Torres-Pacheco, I, Cruz-Hern谩ndez, A, Gonz谩lez-Chavira, MM, Ocampo-Vel谩zquez, RV, Guevara-Gonz谩lez, RG (2013) Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int J Mol Sci 14: pp. 10178-10196
    107. Meng, XH, Yang, LY, Kennedy, JF, Tian, SP (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81: pp. 70-75
    108. Mi, FL, Tan, YC, Liang, HF, Sung, HW (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23: pp. 181-191
    109. Mitchell, HJ, Hall, JL, Barber, MS (1994) Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol 104: pp. 551-556
    110. Miya, A, Albert, P, Shinya, T, Desaki, Y, Ichimura, K, Shirasu, K, Narusaka, Y, Kawakami, N, Kaku, H, Shibuya, N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104: pp. 19613-19618
    111. Ndimba, BK, Chivasa, S, Hamilton, JM, Simon, WJ, Slabas, AR (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3: pp. 1047-1059
    112. Neill, SJ, Desikan, R, Hancock, JT (2003) Nitric oxide signalling in plants. New Phytol 159: pp. 11-35
    113. Nicholson, RL, Hammerschmidt, R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30: pp. 369-389
    114. No, HK, Park, NY, Lee, SH, Meyers, SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74: pp. 65-72
    115. Nurnberger, T, Brunner, F, Kemmerking, B, Piater, L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198: pp. 249-266
    116. Orgaz, B, Lobete, MM, Puga, CH, Jose, CS (2011) Effectiveness of chitosan against mature biofilms formed by food related bacteria. Int J Mol Sci 12: pp. 817-828
    117. Orlita, A, Sidwa-Gorycka, M, Paszkiewicz, M, Malinski, E, Kumirska, J, Siedlecka, EM, 艁ojkowska, E, Stepnowski, P (2008) Application of chitin and chitosan as elicitors of coumarins and fluoroquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnol Appl Biochem 51: pp. 91-96
    118. Orozco-Cardenas, M, Ryan, CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A 96: pp. 6553-6557
    119. Ozeretskovskaia, OL, Vasiukova, NI, Chalenko, GI, Gerasimova, NG, Revina, TA, Valueva, TA (2009) Wound healing and induced resistance in potato tubers. Prikl Biokhim Mikrobiol 45: pp. 220-224
    120. Palma-Guerrero, J, Huang, IC, Jansson, HB, Salinas, J, Lopez-Llorca, LV, Read, ND (2009) Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genet Biol 46: pp. 585-594
    121. Palma-Guerrero, J, Lopez-Jimenez, JA, P茅rez-Bern谩, AJ, Huang, IC, Jansson, HB, Salinas, J, Villala铆n, J, Read, ND, Lopez-Llorca, LV (2010) Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol Microbiol 75: pp. 1021-1032
    122. Park, S-I, Daeschel, MA, Zhao, Y (2004) Functional properties of antimicrobial lysozyme鈥揷hitosan composite films. J Food Sci 69: pp. 215-221
    123. Park, Y, Kim, MH, Park, SC, Cheong, H, Jang, MK, Nah, JW, Hahm, KS (2008) Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechn 18: pp. 1729-1734
    124. Petutschnig, EK, Jones, AM, Serazetdinova, L, Lipka, U, Lipka, V (2010) The lysin motif receptor-like kinase (Lysm-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Bio Chem 285: pp. 28902-28911
    125. Pillai, CKS, Paul, W, Sharma, CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34: pp. 641-678
    126. Pizzo, P, Giurisato, E, Tassi, M, Benedetti, A, Pozzan, T, Viola, A (2002) Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur J Immunol 32: pp. 3082-3091
    127. Povero, G, Loreti, E, Pucciariello, C, Santaniello, A, Tommaso, D, Tommaso, G, Kapetis, D, Zolezzi, F, Piaggesi, A, Perata, P (2011) Transcript profiling of chitosan-treated Arabidopsis seedlings. J Plant Res 124: pp. 619-629
    128. Qiu, M, Wu, C, Ren, G, Liang, X, Wang, X, Huang, J (2014) Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chem 155: pp. 105-111
    129. Raafat, D, Bargen, KV, Haas, A, Sahl, H-G (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microb 74: pp. 3764-3773
    130. Rabea, EI, Steurbaut, W (2010) Chemically modified chitosans as antimicrobial agents against some plant pathogenic bacteria and fungi. Plant Protect Sci 4: pp. 149-158
    131. Rabea, EI, Badawy, ME-T, Stevens, CV, Smagghe, G, Steurbaut, W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4: pp. 1457-1465
    132. Rabea, EI, Badawy, MEI, Steurbaut, W, Stevens, CV (2009) In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi. Eur Polym J 45: pp. 237-245
    133. Rahman, M, Punja, ZK (2005) Biochemistry of ginseng root tissues affected by rusty root symptoms. Plant Physiol Biochem 43: pp. 1103-1114
    134. Raho, N, Ramirez, L, Lanteri, ML, Gonorazky, G, Lamattina, L, Have, A, Laxalt, AM (2011) Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol 168: pp. 534-539
    135. Rajan, A, Kurup, JG, Abraham, TE (2005) Biosoftening of arecanut fiber for value added products. Biochem Eng J 25: pp. 237-242
    136. Rakwal, R, Tamogami, S, Agrawal, GK, Iwahashi, H (2002) Octadecanoid signaling component 鈥渂urst鈥?in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Commun 295: pp. 1041-1045
    137. Ray, SD (2011) Potential aspects of chitosan as pharmaceutical excipient. Acta Pol Pharm 68: pp. 619-622
    138. Reglinski, T, Elmer, PAG, Taylor, JT, Wood, PN, Hoyte, SM (2010) Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathol 59: pp. 882-890
    139. Romanazzi, G, Nigro, F, Ippolito, A, Venere, D, Salerno, M (2002) Effects of pre- and postharvest chitosan treatments to control storage grey mold of table grapes. J Food Sci 67: pp. 1862-1867
    140. Romanazzi, G, Mlikota Gabler, F, Margosan, D, Mackey, BE, Smilanick, JL (2009) Effect of chitosan dissolved in different acids on its ability to control postharvest gray mold of table grape. Phytopathology 99: pp. 1028-1036
    141. Sanford, PA Commercial sources of chitin and chitosan and their utilization. In: Varum, KM, Domard, A, Smidsr脴d, O eds. (2003) Advances in Chitin Science. NTNU, Trondheim, pp. 35-42
    142. Selitrennikoff, CL (2001) Antifungal proteins. Appl Environ Microbiol 67: pp. 2883-2894
    143. Seo, M, Koshiba, T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7: pp. 41-48
    144. Seyfarth, F, Schliemann, S, Elsner, P, Hipler, U-C (2008) Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm 353: pp. 139-148
    145. Shi, ZL, Neoh, KG, Kang, ET, Wang, W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27: pp. 2440-2449
    146. Shibuya, N, Minami, E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant P 59: pp. 223-233
    147. Silva, TH, Alves, A, Ferreira, BM, Oliveira, JM, Reys, LL, Ferreira, RJF, Sousa, RA, Silva, SS, Mano, JF, Reis, RL (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57: pp. 276-306(31)
    148. Singla, AK, Chawla, M (2001) Chitosan: some pharmaceutical and biological aspects-an update. J Pharm Pharmacol 53: pp. 1047-1067
    149. Su, XW, Zivanovic, S, D鈥橲ouza, DH (2009) Effect of chitosan on the infectivity of murine norovirus, feline calicivirus, and bacteriophage MS2. J Food Protect 72: pp. 2623-2628
    150. Sudarshan, NR, Hoover, DG, Knorr, D (1992) Antibacterial action of chitosan. Food Biotechnol 6: pp. 257-272
    151. Sun, B, Zhang, L, Yang, L, Zhang, F, Norse, D, Zhu, Z (2012) Agricultural non-point source pollution in China: causes and mitigation measures. Ambio 41: pp. 370-379
    152. Sung, WS, Lee, DG (2010) Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl Chem 82: pp. 219-226
    153. Tan, HL, Ma, R, Lin, CC, Liu, ZW, Tang, TT (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14: pp. 1854-1869
    154. Tang, H, Zhang, P, Kieft, TL, Ryan, SJ, Baker, SM, Wiesmann, WP, Rogelj, S (2010) Antibacterial action of a novel functionalized chitosan-arginine against gram-negative bacteria. Acta Biomater 6: pp. 2562-2571
    155. Tayel, AA, Moussa, S, Opwis, K, Knittel, D, Schollmeyer, E, Nickisch-Hartfiel, A (2010) Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol 47: pp. 10-14
    156. Tocci, N, Simonetti, G, D鈥橝uria, FD, Panella, S, Palamara, AT, Valletta, A, Pasqua, G (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol 91: pp. 977-987
    157. Toshkova, R, Manolova, N, Gardeva, E, Ignatova, M, Yossifova, L, Rashkov, I, Alexandrov, M (2010) Antitumor activity of quaternized chitosan-based electrospun implants against Graffi myeloid tumor. Int J Pharm 400: pp. 221-233
    158. Treutter, D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4: pp. 147-157
    159. Upadhyaya, L, Singh, J, Agarwal, V, Tewari, RP (2013) Biomedical applications of carboxymethyl chitosans. Carbohydr Polym 91: pp. 452-466
    160. Vaara, M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56: pp. 395-411
    161. Vallance, J, D茅niel, F, Floch, GL, Gu茅rin-Dubrana, L, Blancard, D, Rey, P (2011) Pathogenic and beneficial microorganisms in soilless cultures. Agron Sustain Dev 31: pp. 191-203
    162. Loon, LC, Kammen, A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiunu tubucum var. 鈥楽amsun鈥?and 鈥楽amsun NN鈥? II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40: pp. 199-201
    163. Vishu, KAB, Varadaraj, MC, Gowda, LR, Tharanathan, RN (2005) Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem J 391: pp. 167-175
    164. Wang, W, Wang, SX, Guan, HS (2012) The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs 10: pp. 2795-2816
    165. Wi艣niewska-Wrona, M, Niekraszewicz, A, Ciecha艅ska, D, Pospieszny, H, Orlikowski, LB (2007) Biological properties of chitosan degradation products. Polish Chitin Society, Monograph XII
    166. Wojtaszek, P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322: pp. 681-692
    167. Xing, K, Chen, XG, Li, YY, Liu, CS, Liu, CG, Cha, DS, Park, HJ (2008) Antibacterial activity of oleoyl-chitosan nanoparticles: a novel antibacterial dispersion system. Carbohydr Polym 74: pp. 114-120
    168. Xing, K, Chen, XG, Kong, M, Liu, CS, Cha, DS, Park, HJ (2009) Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym 76: pp. 17-22
    169. Xing, K, Chen, XG, Liu, CS, Cha, DS, Park, HJ (2009) Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int J Food Microbiol 132: pp. 127-133
    170. Yang, T, Poovaiah, BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A 99: pp. 4097-4102
    171. Ye, XL, Li, XG, Yuan, LJ, Ge, LH, Zhang, BS, Zhou, SB (2007) Interaction of houttuyfonate homologues with the cell membrane of gram-positive and gram-negative bacteria. Colloid Surface A 301: pp. 412-418
    172. Yin, H, Li, S, Zhao, X, Du, Y, Ma, X (2006) cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol Biochem 44: pp. 910-916
    173. Yin, H, Frett茅, XC, Christensen, LP, Grevsen, K (2012) Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). J Agric Food Chem 60: pp. 136-143
    174. Younes, I, Hajji, S, Frachet, V, Rinaudo, M, Jellouli, K, Nasri, M (2014) Chitin extraction from shrimp shell using enzymatic treatment. antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69: pp. 489-498
    175. Zaharoff, DA, Rogers, CJ, Hance, KW, Schlom, J, Greiner, JW (2007) Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine 25: pp. 2085-2094
    176. Zakrzewska, A, Boorsma, A, Brul, S, Hellingwerf, KJ, Klis, FM (2005) Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot Cell 4: pp. 703-715
  • 刊物主题:Agriculture; Soil Science & Conservation; Sustainable Development;
  • 出版者:Springer Paris
  • ISSN:1773-0155
文摘
In agriculture, current control of pathogens relies mainly on chemical fertilizers and pesticides. However, alternative solutions are needed due to concerns for public health, environmental protection, and development of resistant pests. Chitosan is a nontoxic, biodegradable biopolymer showing antimicrobial and plant-immunity eliciting properties. Here, we review chitosan antimicrobial activities, modes of action, and the elicitation of plant defense responses. The major points are the following: (1) Chitosan exhibits various inhibitory efficiency against bacteria, fungi, and viruses; (2) the five main modes of action of chitosan are electrostatic interactions, plasma membrane damage mechanism, chitosan-DNA/RNA interactions, metal chelation capacity of chitosan, and deposition onto the microbial surface; (3) the elicitation of plant defense responses by chitosan may be related to various pathogenesis-related proteins, defense-related enzymes, and secondary metabolites accumulation, as well as the complex signal transduction network. The facing problems and strategies for antimicrobial mechanism research and agricultural application of chitosan are also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700