用户名: 密码: 验证码:
Quantitative analysis of seismic velocity tomography in rock burst hazard assessment
详细信息    查看全文
  • 作者:Wu Cai (1) (2)
    Linming Dou (1) (2)
    Siyuan Gong (1)
    Zhenlei Li (1) (2)
    Shasha Yuan (3)

    1. State Key Laboratory of Coal Resources and Safe Mining
    ; China University of Mining and Technology ; Xuzhou ; 221116 ; China
    2. School of Mines
    ; China University of Mining and Technology ; Xuzhou ; 221116 ; China
    3. Internet of Things (Perception Mine) Research Center
    ; China University of Mining and Technology ; Xuzhou ; 221008 ; China
  • 关键词:Rock burst hazard ; Seismic hazard ; Seismic velocity tomography ; Bursting strain energy ; Structural similarity (SSIM)
  • 刊名:Natural Hazards
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:75
  • 期:3
  • 页码:2453-2465
  • 全文大小:3,078 KB
  • 参考文献:1. Amitrano D (2012) Variability in the power-law distributions of rupture events. Eur Phys J Spec Top 205:199鈥?15. doi:10.1140/epjst/e2012-01571-9 CrossRef
    2. Ba艅ka P, Jaworski A (2010) Possibility of more precise analytical prediction of rock mass energy changes with the use of passive seismic tomography readings. Arch Min Sci 55:723鈥?31
    3. Benioff H (1951) Crustal strain characteristics derived from earthquake sequences. Trans Am Geophys Union 32:508鈥?14 CrossRef
    4. Br盲uner G (1994) Rockbursts in coal mines and their prevention. AA Balkema, Rotterdam
    5. Dou L, Chen T, Gong S, He H, Zhang S (2012a) Rockburst hazard determination by using computed tomography technology in deep workface. Saf Sci 50:736鈥?40. doi:10.1016/j.ssci.2011.08.043 CrossRef
    6. Dou L, He J, Gong S, Song Y, Liu H (2012b) A case study of micro-seismic monitoring: goaf water-inrush dynamic hazards. J China Univ Min Technol 41:20鈥?5
    7. Dou L, Cai W, Gong S, Han R, Liu J (2014) Dynamic risk assessment of rock burst based on the technology of seismic computed tomography detection. J China Coal Soc 39:238鈥?44. doi:10.13225/j.cnki.jccs.2013.2016
    8. Eberhart-Phillips D, Han D-H, Zoback MD (1989) Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics 54:82鈥?9. doi:10.1190/1.1442580 CrossRef
    9. Filimonov Y, Lavrov A, Shkuratnik V (2005) Effect of confining stress on acoustic emission in ductile rock. Strain 41:33鈥?5. doi:10.1111/j.1475-1305.2004.00182.x CrossRef
    10. Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8鈥?1. doi:10.1785/gssrl.66.4.8 CrossRef
    11. Frankel A et al (2000) USGS national seismic hazard maps. Earthq Spectra 16:1鈥?9. doi:10.1193/1.1586079 CrossRef
    12. Friedel M, Jackson M, Scott D, Williams T, Olson M (1995) 3-D tomographic imaging of anomalous conditions in a deep silver mine. J Appl Geophys 34:1鈥?1. doi:10.1016/0926-9851(95)00007-O CrossRef
    13. Friedel M, Scott D, Williams T (1997) Temporal imaging of mine-induced stress change using seismic tomography. Eng Geol 46:131鈥?41. doi:10.1016/S0013-7952(96)00107-X CrossRef
    14. Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36:105鈥?17. doi:10.1016/0022-5193(72)90180-4 CrossRef
    15. Gong S (2010) Research and application of using mine tremor velocity tomography to forecast rockburst danger in coal mine. China University of Mining and Technology, Xuzhou, China
    16. Gong S, Dou L, Cao A, He H, Du T, Jiang H (2010) Study on optimal configuration of seismological observation network for coal mine. Chinese J Geophys-CH 53:457鈥?65. doi:10.3969/j.issn.0001-5733.2010.02.025
    17. Gong S, Dou L, He J, He H, Lu C, Mu Z (2012a) Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment. Rock and Soil Mech 33:41鈥?7
    18. Gong S, Dou L, Xu X, He J, Lu C, He H (2012b) Experimental study on the correlation between stress and P-wave velocity for burst tendency coal-rock samples. J Min Saf Eng 29:67鈥?1
    19. Hardy Jr HR (2003) Acoustic emission/microseismic activity: volume 1: principles, techniques and geotechnical applications. Taylor & Francis
    20. He H, Dou L, Li X, Qiao Q, Chen T, Gong S (2011) Active velocity tomography for assessing rock burst hazards in a kilometer deep mine. Min Sci Technol 21:673鈥?76. doi:10.1016/j.mstc.2011.10.003
    21. Hosseini N, Oraee K, Shahriar K, Goshtasbi K (2012a) Passive seismic velocity tomography and geostatistical simulation on longwall mining panel. Arch Min Sci 57:139鈥?55. doi:10.2478/v10267-012-0010-9
    22. Hosseini N, Oraee K, Shahriar K, Goshtasbi K (2012b) Passive seismic velocity tomography on longwall mining panel based on simultaneous iterative reconstructive technique (SIRT). J Cent South Univ 19:2297鈥?306. doi:10.1007/s11771-012-1275-z CrossRef
    23. Hosseini N, Oraee K, Shahriar K, Goshtasbi K (2013) Studying the stress redistribution around the longwall mining panel using passive seismic velocity tomography and geostatistical estimation. Arab J Geosci 6:1407鈥?416. doi:10.1007/s12517-011-0443-z CrossRef
    24. Jiang Y, Pan Y, Jiang F, Dou L, Ju Y (2014) State of the art review on mechanism and prevention of coal bumps in China. J China Coal Soc 39:205鈥?13. doi:10.13225/j.cnki.jccs.2013.0024
    25. Kornowski J, Kurzeja J (2012) Prediction of rockburst probability given seismic energy and factors defined by the expert method of hazard evaluation (MRG). Acta Geophys 60:472鈥?86. doi:10.2478/s11600-012-0002-3 CrossRef
    26. Kracke DW, Heinrich R (2004) Local seismic hazard assessment in areas of weak to moderate seismicity-case study from Eastern Germany. Tectonophysics 390:45鈥?5. doi:10.1016/j.tecto.2004.03.023 CrossRef
    27. Luo X, King A, Van de Werken M (2009) Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source鈥攁 feasibility study. IEEE Trans Geosci Remote Sens 47:3671鈥?678. doi:10.1109/tgrs.2009.2018445 CrossRef
    28. Lurka A (2008) Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography. J China Univ Min Technol 18:177鈥?81. doi:10.1016/S1006-1266(08)60038-3 CrossRef
    29. Luxbacher KD (2008) Time-lapse passive seismic velocity tomography of longwall coal mines: a comparison of methods. Virginia Polytechnic Institute and State University, Blacksburg, Virginia
    30. Luxbacher K, Westman E, Swanson P, Karfakis M (2008) Three-dimensional time-lapse velocity tomography of an underground longwall panel. Int J Rock Mech Min Sci 45:478鈥?85. doi:10.1016/j.ijrmms.2007.07.015 CrossRef
    31. Meglis I, Chow T, Martin C, Young R (2005) Assessing in situ microcrack damage using ultrasonic velocity tomography. Int J Rock Mech Min Sci 42:25鈥?4. doi:10.1016/j.ijrmms.2004.06.002 CrossRef
    32. Mitra R, Westman E (2009) Investigation of the stress imaging in rock samples using numerical modeling and laboratory tomography. Int J Geotech Eng 3:517鈥?25 CrossRef
    33. Nur A, Simmons G (1969) Stress-induced velocity anisotropy in rock: an experimental study. J Geophys Res 74:6667鈥?674. doi:10.1029/JB074i027p06667 CrossRef
    34. Scholz C (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. B Seismol Soc Am 58:399鈥?15
    35. Tang LZ, Xia KW (2010) Seismological method for prediction of areal rockbursts in deep mine with seismic source mechanism and unstable failure theory. J Cent South Univ T 17:947鈥?53. doi:10.1007/s11771-010-0582-5 CrossRef
    36. Tang C, Wang J, Zhang J (2011) Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project. J Rock Mech and Geotech Eng 2:193鈥?08
    37. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE T Image Process 13:600鈥?12. doi:10.1109/TIP.2003.819861 CrossRef
    38. Wang S, Mao D, Du T, Chen F, Feng M (2012) Rockburst hazard evaluation model based on seismic CT technology. J China Coal Soc 37:1鈥? CrossRef
    39. Westman EC (2004) Use of tomography for inference of stress redistribution in rock. IEEE T Ind Appl 40(1413鈥?417):2004. doi:10.1109/TIA.834133
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geophysics and Geodesy
    Geotechnical Engineering
    Civil Engineering
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-0840
文摘
In order to quantitatively evaluate the relationship between the tomographic images of P wave velocity and rock burst hazard, the seismic velocity tomography was used to generate the P wave velocity tomograms during the retreat of a longwall panel in a coal mine. Subsequently, a novel index (bursting strain energy) was proposed to characterize the mining seismic hazard map. Finally, the structural similarity (SSIM) index in the discipline of image quality assessment was introduced to quantitatively assess the relation between the bursting strain energy index images and the tomographic images of P wave velocity. The results show that the bursting strain energy index is appropriate for quantitative analysis and seems to be better for expressing the mining seismic hazard than the conventional map. The SSIM values of the future bursting strain energy compared with the P wave velocity and the current bursting strain energy reach up to 0.8908 and 0.8462, respectively, which illustrate that the P wave velocity and the bursting strain energy both are able to detect the rock burst hazard region. Specifically, seismic velocity tomography is superior to the bursting strain energy index in the detection range and the precision and accuracy of detection results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700