用户名: 密码: 验证码:
miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18
详细信息    查看全文
  • 作者:Seunghee Lee (1) (2) (3)
    Kyung-Rok Yu (1) (2)
    Young-Sil Ryu (1) (2)
    Young Sun Oh (4) (5)
    In-Sun Hong (6) (7)
    Hyung-Sik Kim (1) (2) (3)
    Jin Young Lee (1) (2)
    Sunghoon Kim (4) (5)
    Kwang-Won Seo (1) (2) (3)
    Kyung-Sun Kang (1) (2)
  • 关键词:AIMP3/p18 ; Stem cell ; Aging ; miR ; 543 ; miR ; 590 ; 3p
  • 刊名:AGE
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:36
  • 期:6
  • 全文大小:2,558 KB
  • 参考文献:1. Blagosklonny MV (2003) Cell senescence and hypermitogenic arrest. EMBO Rep 4:358鈥?62. doi:10.1038/sj.embor.embor806 CrossRef
    2. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14. doi:10.1186/1471-2121-7-14 CrossRef
    3. Bonifacio LN, Jarstfer MB (2010) MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PloS One 5. doi:10.1371/journal.pone.0012519
    4. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25鈥?6 CrossRef
    5. Bringold F, Serrano M (2000) Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35:317鈥?29 CrossRef
    6. Chang BD et al (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761鈥?767
    7. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022鈥?025. doi:10.1126/science.1088060 CrossRef
    8. Chivukula RR, Mendell JT (2008) Circular reasoning: microRNAs and cell-cycle control. Trends Biochem Sci 33:474鈥?81. doi:10.1016/j.tibs.2008.06.008 CrossRef
    9. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944鈥?3949. doi:10.1073/pnas.0506654102 CrossRef
    10. Driessens N et al (2009) Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr-Relat Cancer 16:845鈥?56. doi:10.1677/ERC-09-0020 CrossRef
    11. Fehrer C, Lepperdinger G (2005) Mesenchymal stem cell aging. Exp Gerontol 40:926鈥?30. doi:10.1016/j.exger.2005.07.006 CrossRef
    12. Galderisi U et al (2009) In vitro senescence of rat mesenchymal stem cells is accompanied by downregulation of stemness-related and DNA damage repair genes. Stem Cells Dev 18:1033鈥?042. doi:10.1089/scd.2008.0324 CrossRef
    13. Grillari J, Grillari-Voglauer R (2010) Novel modulators of senescence, aging, and longevity: Small non-coding RNAs enter the stage. Exp Gerontol 45:302鈥?11. doi:10.1016/j.exger.2010.01.007 CrossRef
    14. Gu S, Kay MA (2010) How do miRNAs mediate translational repression? Silence 1:11. doi:10.1186/1758-907X-1-11 CrossRef
    15. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614鈥?36 CrossRef
    16. Itahana K, Dimri G, Campisi J (2001) Regulation of cellular senescence by p53. Eur J Biochem / FEBS 268:2784鈥?791 CrossRef
    17. Janzen V et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421鈥?26. doi:10.1038/nature05159
    18. Jung JW, Lee S, Seo MS, Park SB, Kurtz A, Kang SK, Kang KS (2010) Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci : CMLS 67:1165鈥?176. doi:10.1007/s00018-009-0242-9 CrossRef
    19. Kang T et al (2012) AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator trna to initiation complex. J Mol Biol 423:475鈥?81. doi:10.1016/j.jmb.2012.07.020 CrossRef
    20. Katsara O et al (2011) Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev 20:1549鈥?561. doi:10.1089/scd.2010.0280 CrossRef
    21. Kim S, You S, Hwang D (2011) Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping Nature. Rev Cancer 11:708鈥?18. doi:10.1038/nrc3124 CrossRef
    22. Kwon NH et al (2011) Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc Natl Acad Sci U S A 108:19635鈥?9640. doi:10.1073/pnas.1103922108 CrossRef
    23. Lee S et al (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging Cellular and molecular life sciences. CMLS 68:325鈥?36. doi:10.1007/s00018-010-0457-9 CrossRef
    24. Lee S et al (2009) Histone deacetylase inhibitors decrease proliferation potential and multilineage differentiation capability of human mesenchymal stem cells. Cell Prolif 42:711鈥?20. doi:10.1111/j.1365-2184.2009.00633.x CrossRef
    25. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008鈥?019 CrossRef
    26. Liu FJ, Wen T, Liu L (2011) MicroRNAs as a novel cellular senescence regulator. Ageing Res Rev. doi:10.1016/j.arr.2011.06.001
    27. Martinez I, Almstead LL, DiMaio D (2011) MicroRNAs and senescence. Aging 3:77鈥?8
    28. McConnell BB, Starborg M, Brookes S, Peters G (1998) Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Current Biol: CB 8:351鈥?54 CrossRef
    29. Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113(Pt 7):1161鈥?166
    30. Oh YS et al (2010) Downregulation of lamin A by tumor suppressor AIMP3/p18 leads to a progeroid phenotype in mice. Aging Cell 9:810鈥?22. doi:10.1111/j.1474-9726.2010.00614.x CrossRef
    31. Olovnikov AM (1996) Telomeres, telomerase, and aging: Origin of the theory. Exp Gerontol 31:443鈥?48 CrossRef
    32. Park BJ et al (2005) The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120:209鈥?21. doi:10.1016/j.cell.2004.11.054 CrossRef
    33. Park BJ, Oh YS, Park SY, Choi SJ, Rudolph C, Schlegelberger B, Kim S (2006) AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability. Cancer Res 66:6913鈥?918. doi:10.1158/0008-5472.CAN-05-3740 CrossRef
    34. Pillai RS (2005) MicroRNA function: Multiple mechanisms for a tiny RNA? RNA 11:1753鈥?761. doi:10.1261/rna.2248605 CrossRef
    35. Poy MN et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226鈥?30. doi:10.1038/nature03076 CrossRef
    36. Rong Q, Huang J, Su E, Li J, Zhang L, Cao K (2007) Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells. Virol J 4:36. doi:10.1186/1743-422X-4-36 CrossRef
    37. Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat : Rev Comment Antimicrob Anticancer Chemother 4:303鈥?13. doi:10.1054/drup.2001.0213 CrossRef
    38. Schellenberg A et al (2011) Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging 3:873鈥?88
    39. Smith JA, Daniel R (2012) Stem cells and aging: a chicken-or-the-egg issue? Aging Dis 3:260鈥?68
    40. So AY, Jung JW, Lee S, Kim HS, Kang KS (2011) DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6:e19503. doi:10.1371/journal.pone.0019503 CrossRef
    41. Terao Y et al (2001) Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells International journal of cancer. J Int Cancer 94:257鈥?67 CrossRef
    42. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515鈥?24. doi:10.1101/gad.1399806 CrossRef
    43. Villa C et al (2011) Role of hnRNP-A1 and miR-590-3p in neuronal death: Genetics and expression analysis in patients with Alzheimer disease and frontotemporal lobar degeneration. Rejuvenation Res 14:275鈥?81. doi:10.1089/rej.2010.1123 CrossRef
    44. Wagner W et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PloS One 3:e2213. doi:10.1371/journal.pone.0002213 CrossRef
    45. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855鈥?62 CrossRef
    46. Woolthuis CM, de Haan G, Huls G (2011) Aging of hematopoietic stem cells: Intrinsic changes or micro-environmental effects? Curr Opin Immunol 23:512鈥?17. doi:10.1016/j.coi.2011.05.006 CrossRef
    47. Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing 鈥榮temness鈥? Nature 452:225鈥?29. doi:10.1038/nature06642 CrossRef
    48. Yu KR, Kang KS (2013) Aging-related genes in mesenchymal stem cells: a mini-review. Gerontology 59:557鈥?63. doi:10.1159/000353857 CrossRef
    49. Yu KR et al (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30:876鈥?87. doi:10.1002/stem.1052 CrossRef
  • 作者单位:Seunghee Lee (1) (2) (3)
    Kyung-Rok Yu (1) (2)
    Young-Sil Ryu (1) (2)
    Young Sun Oh (4) (5)
    In-Sun Hong (6) (7)
    Hyung-Sik Kim (1) (2) (3)
    Jin Young Lee (1) (2)
    Sunghoon Kim (4) (5)
    Kwang-Won Seo (1) (2) (3)
    Kyung-Sun Kang (1) (2)

    1. Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Republic of Korea
    2. Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Republic of Korea
    3. Institute for Stem Cell and Regenerative Medicine in Kang Stem Biotech, Biotechnology Incubating Center, Seoul National University, Seoul, 151-742, Republic of Korea
    4. Medicinal Bioconvergence Research Center, Seoul National University, Seoul, 151-742, Republic of Korea
    5. WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, 443-270, Republic of Korea
    6. Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea
    7. Lee Gil Ya Cancer and Diabetes Institute, Incheon, Republic of Korea
  • ISSN:1574-4647
文摘
Previously, AIMP3 (aminoacyl-tRNAsynthetase-interacting multifunctional protein-3) was shown to be involved in the macromolecular tRNA synthetase complex or to act as a tumor suppressor. In this study, we report a novel role of AIMP3/p18 in the cellular aging of human mesenchymal stem cells (hMSCs). We found that AIMP3/p18 expression significantly increased in senescent hMSCs and in aged mouse bone marrow-derived MSCs (mBM-MSCs). AIMP3/p18 overexpression is sufficient to induce the cellular senescence phenotypes with compromised clonogenicity and adipogenic differentiation potential. To identify the upstream regulators of AIMP3/p18 during senescence, we screened for potential epigenetic regulators and for miRNAs. We found that the levels of miR-543 and miR-590-3p significantly decreased under senescence-inducing conditions, whereas the AIMP3/p18 protein levels increased. We demonstrate for the first time that miR-543 and miR-590-3p are able to decrease AIMP3/p18 expression levels through direct binding to the AIMP/p18 transcripts, which further compromised the induction of the senescence phenotype. Taken together, our data demonstrate that AIMP3/p18 regulates cellular aging in hMSCs possibly through miR-543 and miR-590-3p.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700