用户名: 密码: 验证码:
Sensitivity analysis for process parameters influencing electric arc cutting
详细信息    查看全文
  • 作者:Xiaojie Tian (1)
    Yonghong Liu (2)
    Wei Deng (3)
    Guijie Liu (1)

    1. College of Engineering
    ; Ocean University of China ; Qingdao ; 266110 ; China
    2. College of Mechanical and Electrical Engineering
    ; China University of Petroleum ; Qingdao ; 266580 ; China
    3. Unit 63981
    ; PLA ; Wuhan ; 430311 ; China
  • 关键词:Arc cutting ; Sensitivity analysis ; Mathematical modeling ; PDS
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:78
  • 期:1-4
  • 页码:481-492
  • 全文大小:2,607 KB
  • 参考文献:1. Tian, X, Liu, Y, Lin, R, Sun, P, Ji, R (2013) An autonomous robot for casing cutting in oil platform decommission. Int J Control Autom 6: pp. 356-362
    2. Asserin, O, Loredo, A, Petelet, M (2011) Global sensitivity analysis in welding simulations鈥攚hat are the material data you really need?. Finite Elem Anal Des 47: pp. 1004-1016 CrossRef
    3. Afazov, SM, Nikov, S, Becker, AA, Hyde, TH (2011) Manufacturing chain simulation of an aero-engine disc and sensitivity analyses of micro-scale residual stresses. Int J Adv Manuf Technol 52: pp. 279-290 CrossRef
    4. Ben Abdessalem, A, EI-Hami, A (2014) Global sensitivity analysis and multi-objective optimisation of loading path in tube hydroforming process based on metamodelling techniques. Int J Adv Manuf Technol 71: pp. 753-773 CrossRef
    5. Cheng, Q, Zhao, H, Zhang, G, Gu, P, Cai, L (2014) An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis. Int J Adv Manuf Technol 75: pp. 107-121 CrossRef
    6. Karao臒lu, S, Se莽gin, A (2008) Sensitivity analysis of submerged arc welding process parameters. J Mater Process Technol 202: pp. 500-507 CrossRef
    7. Li, HP, Liu, YL, Zhu, X, Yang, H (2014) Global sensitivity analysis and coupling effects of forming parameters on wall thinning and cross-sectional distortion of rotary draw bending of thin-walled rectangular tube with small bending radius. Int J Adv Manuf Technol 74: pp. 581-589 CrossRef
    8. Kim, IS, Jeong, YJ, Son, IJ, Kim, IJ, Kim, JY, Kim, IK (2003) Sensitivity analysis for process parameters influencing weld quality in robotic GMA welding process. J Mater Process Technol 140: pp. 676-681 CrossRef
    9. Palani, PK, Murugan, N (2006) Sensitivity analysis for process parameters in cladding of stainless steel by flux cored arc welding. J Manuf Processes 8: pp. 90-100 CrossRef
    10. An, H, Green, DE, Johrendt, J (2010) Multi-objective optimization and sensitivity analysis of tube hydroforming. Int J Adv Manuf Technol 50: pp. 67-84 CrossRef
    11. Yang, D, Li, X, He, D, Nie, Z, Huang, H (2012) Optimization of weld bead geometry in laser welding with filler wire process using Taguch鈥檚 approach. Opt Laser Technol 44: pp. 2020-2025 CrossRef
    12. Lee, HT, Tai, TY (2003) Relationship between EDM parameters and surface crack formation. J Mater Process Technol 142: pp. 676-683 CrossRef
    13. Erzurumlu, T, Oktem, H (2007) Comparison of response surface model with neural network in determining the surface quality of moulded parts. Mater Des 28: pp. 459-465 CrossRef
    14. Acherjee, B, Arunanshu, SK, Souren, M, Dipten, M (2012) FEM_Modeling and analysis of simultaneous laser transmission welding of polycarbonates using an FEM and RSM combined approach. Opt Laser Technol 44: pp. 995-1006 CrossRef
    15. Gaitonde, VN, Karnik, SR, Faustino, M, Paulo, J (2010) Machinability analysis in turning tungsten鈥揷opper composite for application in EDM electrodes. Int J Refract Met Hard Mater 28: pp. 221-227 CrossRef
    16. Reh, S, Beley, J, Mukherjee, S, Khor, EH (2006) Probabilistic finite element analysis using ANSYS. Struct Saf 28: pp. 17-43 CrossRef
    17. Nakamura, T, Fujii, K (2006) Probabilistic transient thermal analysis of an atmospheric reentry vehicle structure. Aerosp Sci Technol 10: pp. 346-354 CrossRef
    18. Liu, PF, Zheng, JY (2010) Strength reliability analysis of aluminium-carbon fiber epoxy composite laminates. J Loss Prev Process Ind 23: pp. 421-427 CrossRef
    19. Myers, RH, Montgomery, DC (2002) Response surface methodology. Wiley, New York, NY
    20. Delwiche LD, Slaughter SJ The Little SAS Book: A Primer, Fourth Edition. Cary, NC: SAS Institute Inc
    21. SAS version 8.0. SAS Inc., Cary, NC
    22. ANSYS version 10.0. ANSYS Inc. USA
    23. Eagar, TW, Tsai, NS (1983) Temperature fields produced by traveling distributed heat sources. Weld J 62: pp. 346-355
    24. Shankar, P, Jain, VK, Sundarajan, T (1997) Analysis of spark profiles during EDM process. Mach Sci Techno 1: pp. 195-217 CrossRef
    25. Kansal, HK, Singh, S, Kumar, P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math Comput Model 47: pp. 11-12
    26. Joshi, SN, Pande, SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Processes 12: pp. 45-56 CrossRef
    27. DiBitonto, DD, Eubank, PT, Patel, MR, Barrufet, MA (1989) Theoretical models of the electrical discharge machining process鈥擨: a simple cathode erosion model. J Appl Phys 66: pp. 4095-4103 CrossRef
    28. Tritt TM (2004) Thermal conductivity: theory, properties, and applications, Kluwer Academic/Plenum Publishers Publisher: Springer, 2004 edition American
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
文摘
Electric arc cutting process parameters play a very significant role in determining the cutting effect. Sensitivity analysis can be utilized to identify the process parameters exerting the most influence on the cutting effect and to know the parameters that must be most carefully controlled. Experiment data analysis and finite element method are both introduced to carry out sensitivity analysis based on the response surface methodology. Changeable process parameters such as workpiece thickness, cutting current, and electrode diameter are used as design variables. Cutting hole geometry in experiment part is considered as the response, while the response for PDS is the simulation temperature value by finite element method. The results of two methods both show that a change in process parameters affects the cutting characteristics. The arc cutting process is most sensitive to the cutting current, less sensitive to electrode diameter, and least sensitive to workpiece thickness. It also reveals that experiment data analysis obtains the detail numerical results, and PDS gives an intuitive analysis result without much trial and error.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700