用户名: 密码: 验证码:
Genetic transformation and somaclonal variation in conifers
详细信息    查看全文
文摘
Production of biotic and abiotic resistant conifers is now primarily accomplished through production of embryo-derived transgenics. Furthermore, gene-drive systems like CRISPR/Cas9 are now providing optimistic outlooks for more precise manipulation of genes in the conifer genome. Nonetheless, experimental guidelines suggest that the careless mass production of propagates might result in severe commercial loss because infrequent mutations sometimes go unnoticed until much later stages in plant development or even in offspring. The micropropagation procedure, types of explants, subculture duration, and PGRs, mostly through hypermethylation, can all contribute to variations in mutation frequency. Furthermore, rapidly dividing cells may undergo mutation in genes essential for regeneration, causing genetic instability in offspring as a result. Monitoring the MET1, KYP, H3K4 JMJ14, HAC1, and sRNAs can potentially highlight epigenetic changes during micropropagation. Decrease in frequency of tissue culture-induced variation may be achieved by applying a cocktail of visual inspections, molecular markers, cytogenetic surveys through Mass/Flow cytometery, the consideration of hypo/hypermethylation, and acetylation percentages, assessing key genes involved in this process, and by further related monitoring strategies. Together, scrutinizing different aspects of conifer tissue culture and genetic transformation would contribute to a better understanding of pivotal elements that can boost higher quality and quantity of conifer production. Furthermore, this can prevent unwanted phenotypic plasticity which may sometimes go unnoticed until very late stages in offspring.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700