用户名: 密码: 验证码:
On difference equations concerning Schwarzian equation
详细信息    查看全文
  • 作者:Shuang-Ting Lan ; Zong-Xuan Chen
  • 关键词:meromorphic solution ; difference ; Nevanlinna exceptional value
  • 刊名:Advances in Difference Equations
  • 出版年:2017
  • 出版时间:December 2017
  • 年:2017
  • 卷:2017
  • 期:1
  • 全文大小:1585KB
  • 刊物主题:Difference and Functional Equations; Mathematics, general; Analysis; Functional Analysis; Ordinary Differential Equations; Partial Differential Equations;
  • 出版者:Springer International Publishing
  • ISSN:1687-1847
  • 卷排序:2017
文摘
Consider the difference equation $$\biggl[\frac{\Delta^{3}f(z)}{\Delta f(z)}-\frac{3}{2} \biggl(\frac {\Delta^{2}f(z)}{\Delta f(z)} \biggr)^{2} \biggr]^{k} =\frac{P(z,f(z))}{Q(z,f(z))}, $$ where \(P(z,f)\) and \(Q(z,f)\) are prime polynomials in \(f(z)\) with \(\deg_{f}P=p, \deg_{f}Q=q\), and \(d=\max\{p,q\}>0\). We give the supremum of d, an estimation of the sum of Nevanlinna exceptional values of meromorphic solution \(f(z)\) of the equation, and study the value distributions of their difference \(\Delta f(z)\) and divided difference \(\frac{\Delta f(z)}{f(z)}\).Keywordsmeromorphic solutiondifferenceNevanlinna exceptional valueMSC30D3534A201 Introduction and main resultsIn this paper, we use the basic notions of Nevanlinna theory, such as \(T(r,f)\), \(m(r,f)\), \(N(r,f)\), and so on; see [1–3]. Let \(S(r,f)\) denote any quantity satisfying \(S(r,f) = o (T(r,f) )\) for all r outside a set of finite logarithmic measure. We call fan admissible solution of a difference (or differential) equation if all coefficients α of the equation satisfy \(T(r,\alpha)=S(r,f)\). In addition, we denote by \(\sigma(f)\) the order of growth of a meromorphic function \(f(z)\) and by \(\lambda(f)\) and \(\lambda(\frac{1}{f} )\), respectively, the exponents of convergence of zeros and poles of \(f(z)\), which are defined by $$\sigma(f)=\mathop{\overline{\lim}}_{r\rightarrow\infty}\frac{\log T(r,f)}{\log r},\qquad\lambda(f)= \mathop{\overline{\lim}}_{r\rightarrow\infty}\frac{\log N (r,\frac {1}{f} )}{\log r}, \qquad\lambda\biggl( \frac{1}{f} \biggr)=\mathop{\overline{\lim}}_{r\rightarrow\infty}\frac{\log N(r,f)}{\log r}. $$ If \(\lambda(f-a)<\sigma(f)\), then a is called a Borel exceptional value of f.For \(a\in \mathbb {C}\cup\{\infty\}\), we denote by \(\delta(a, f)\) the deficiency of a to \(f(z)\), which is defined by $$\delta(a,f)=\mathop{\underline{\lim}}_{r\rightarrow\infty}\frac{m (r,\frac {1}{f-a} )}{T(r,f)}\quad(\mbox{if } a \in \mathbb {C}),\qquad\delta(\infty, f)=\mathop{\underline{\lim}}_{r\rightarrow\infty} \frac{m(r,f)}{T(r,f)}. $$ Obviously, \(\delta(a,f)\geq0\). If \(\delta(a,f)>0\), then a is called a Nevanlinna exceptional value of f. The forward differences \(\Delta ^{n}f(z), n\in \mathbb {N}^{+}\), are defined in the standard way [4] by $$ \Delta f(z)=f(z+1)-f(z), \qquad\Delta^{n+1} f(z)=\Delta^{n}f(z+1)- \Delta^{n}f(z). $$Ishizaki [5] studied Schwarzian differential equations and obtained the following:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700