用户名: 密码: 验证码:
Tankyrase inhibition impairs directional migration and invasion of lung cancer cells by affecting microtubule dynamics and polarity signals
详细信息    查看全文
  • 作者:Barbara Lupo ; Jorge Vialard ; Francesco Sassi ; Patrick Angibaud…
  • 关键词:Cancer cell invasion ; Cell migration ; HGF ; Microtubules ; Polarity signals ; Tankyrase
  • 刊名:BMC Biology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:14
  • 期:1
  • 全文大小:2,122 KB
  • 参考文献:1.Chang P, Coughlin M, Mitchison TJ. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol Biol Cell. 2009;20(21):4575–85.PubMed PubMedCentral CrossRef
    2.Palazzo L, Della Monica R, Visconti R, Costanzo V, Grieco D. ATM controls proper mitotic spindle structure. Cell Cycle. 2014;13(7):1091100.PubMed PubMedCentral CrossRef
    3.Chang P, Jacobson MK, Mitchison TJ. Poly(ADP-ribose) is required for spindle assembly and structure. Nature. 2004;432(7017):645–9.PubMed CrossRef
    4.Chang P, Coughlin M, Mitchison TJ. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol. 2005;7(11):1133–9.PubMed CrossRef
    5.Dynek JN, Smith S. Resolution of sister telomere association is required for progression through mitosis. Science. 2004;304(5667):97–100.PubMed CrossRef
    6.Kim MK, Dudognon C, Smith S. Tankyrase 1 regulates centrosome function by controlling CPAP stability. EMBO Rep. 2012;13(8):724–32.PubMed PubMedCentral CrossRef
    7.Ozaki Y, Matsui H, Asou H, Nagamachi A, Aki D, Honda H, et al. Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol Cell. 2012;47(5):694–706.PubMed CrossRef
    8.Cook BD, Dynek JN, Chang W, Shostak G, Smith S. Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol. 2002;22(1):332–42.PubMed PubMedCentral CrossRef
    9.Smith S, de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol. 2000;10(20):1299–302.PubMed CrossRef
    10.McCabe N, Cerone MA, Ohishi T, Seimiya H, Lord CJ, Ashworth A. Targeting tankyrase 1 as a therapeutic strategy for BRCA-associated cancer. Oncogene. 2009;28(11):1465–70.PubMed CrossRef
    11.Haikarainen T, Krauss S, Lehtio L. Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des. 2014;20(41):6472–88.PubMed PubMedCentral CrossRef
    12.Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614–20.PubMed CrossRef
    13.Guettler S, LaRose J, Petsalaki E, Gish G, Scotter A, Pawson T, et al. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell. 2011;147(6):1340–54.PubMed CrossRef
    14.Sbodio JI, Chi NW. Identification of a tankyrase-binding motif shared by IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase partner. J Biol Chem. 2002;277(35):31887–92.PubMed CrossRef
    15.Chang W, Dynek JN, Smith S. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem J. 2005;391(Pt 2):177–84.PubMed PubMedCentral CrossRef
    16.Lyons RJ, Deane R, Lynch DK, Ye ZS, Sanderson GM, Eyre HJ, et al. Identification of a novel human tankyrase through its interaction with the adaptor protein Grb14. J Biol Chem. 2001;276(20):17172–80.PubMed CrossRef
    17.Fuchs U, Rehkamp GF, Slany R, Follo M, Borkhardt A. The formin-binding protein 17, FBP17, binds via a TNKS binding motif to tankyrase, a protein involved in telomere maintenance. FEBS Lett. 2003;554(1-2):10–6.PubMed CrossRef
    18.Karlberg T, Markova N, Johansson I, Hammarström M, Schütz P, Weigelt J, et al. Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J Med Chem. 2010;53(14):5352–5.PubMed CrossRef
    19.Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138(1):51–62.PubMed PubMedCentral CrossRef
    20.Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 1991;10(10):2867–78.PubMed PubMedCentral
    21.Bao R, Christova T, Song S, Angers S, Yan X, Attisano L. Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells. PLoS One. 2012;7(11):e48670.PubMed PubMedCentral CrossRef
    22.Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, et al. EphA2 promotes epithelial-mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer cells. Oncogene. 2014;33(21):2737–47.PubMed CrossRef
    23.Buccione R, Orth JD, McNiven MA. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol. 2004;5(8):647–57.PubMed CrossRef
    24.Etienne-Manneville S. Microtubules in cell migration. Annu Rev Cell Dev Biol. 2013;29:471–99.PubMed CrossRef
    25.Kaverina I, Straube A. Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol. 2011;22(9):968–74.PubMed PubMedCentral CrossRef
    26.Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312(5991):237–42.PubMed CrossRef
    27.Etienne-Manneville S. Actin and microtubules in cell motility: which one is in control? Traffic. 2004;5(7):470–7.PubMed CrossRef
    28.Gundersen GG. Evolutionary conservation of microtubule-capture mechanisms. Nat Rev Mol Cell Biol. 2002;3(4):296–304.PubMed CrossRef
    29.Luxton GW, Gundersen GG. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr Opin Cell Biol. 2011;23(5):579–88.PubMed PubMedCentral CrossRef
    30.Manneville JB, Etienne-Manneville S. Positioning centrosomes and spindle poles: looking at the periphery to find the centre. Biol Cell. 2006;98(9):557–65.PubMed CrossRef
    31.Etienne-Manneville S, Hall A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell. 2001;106(4):489–98.PubMed CrossRef
    32.Etienne-Manneville S, Manneville JB, Nicholls S, Ferenczi MA, Hall A. Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol. 2005;170(6):895–901.PubMed PubMedCentral CrossRef
    33.Etienne-Manneville S. APC in cell migration. Adv Exp Med Biol. 2009;656:30–40.PubMed CrossRef
    34.Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol. 2000;2(9):653–60.PubMed CrossRef
    35.Siegrist SE, Doe CQ. Microtubule-induced cortical cell polarity. Genes Dev. 2007;21(5):483–96.PubMed CrossRef
    36.Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, et al. Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS One. 2011;6(7):e22595.PubMed PubMedCentral CrossRef
    37.Riffell JL, Lord CJ, Ashworth A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov. 2012;11(12):923–36.PubMed CrossRef
    38.Lupo B, Trusolino L. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim Biophys Acta. 2014;1846(1):20115.PubMed
    39.Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 2013;73(10):3132–44.PubMed CrossRef
    40.Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, et al. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 2012;72(11):2822–32.PubMed CrossRef
    41.Liao G, Nagasaki T, Gundersen GG. Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion. J Cell Sci. 1995;108(Pt 11):3473–83.PubMed
    42.Ballestrem C, Wehrle-Haller B, Hinz B, Imhof BA. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol Biol Cell. 2000;11(9):2999–3012.PubMed PubMedCentral CrossRef
    43.Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J Vasc Res. 2002;39(6):465–76.PubMed CrossRef
    44.Etienne-Manneville S. Polarity proteins in migration and invasion. Oncogene. 2008;27(55):6970–80.PubMed CrossRef
    45.Molina A, Velot L, Ghouinem L, Abdelkarim M, Bouchet BP, Luissint AC, et al. ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer Res. 2013;73(9):2905–15.PubMed CrossRef
    46.Kapoor S, Panda D. Kinetic stabilization of microtubule dynamics by indanocine perturbs EB1 localization, induces defects in cell polarity and inhibits migration of MDA-MB-231 cells. Biochem Pharmacol. 2012;83(11):1495–506.PubMed CrossRef
    47.Torti D, Sassi F, Galimi F, Gastaldi S, Perera T, Comoglio PM, et al. A preclinical algorithm of soluble surrogate biomarkers that correlate with therapeutic inhibition of the MET oncogene in gastric tumors. Int J Cancer. 2012;130(6):1357–66.PubMed CrossRef
    48.Lee YK, Rhodes WT. Nonlinear image processing by a rotating kernel transformation. Opt Lett. 1990;15(23):1383–5.PubMed CrossRef
    49.Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp S, editors. MICCAI '98 medical image computing and computer-assisted intervention, lecture notes in computer science. Berlin: Academic; 1998. p. 130–7.
  • 作者单位:Barbara Lupo (1) (2)
    Jorge Vialard (3)
    Francesco Sassi (2)
    Patrick Angibaud (4)
    Alberto Puliafito (5)
    Emanuela Pupo (6)
    Letizia Lanzetti (1) (6)
    Paolo M. Comoglio (1) (7)
    Andrea Bertotti (1) (2) (8)
    Livio Trusolino (1) (2)

    1. Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy
    2. Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute – FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy
    3. Janssen Research & Development, a Division of Janssen Pharmaceutica NV, 2340, Beerse, Belgium
    4. Janssen Research & Development, a Division of Janssen-Cilag, 27106, Val-de-Reuil, Cedex, France
    5. Laboratory of Cell Migration, Candiolo Cancer Institute – FPO IRCCS, 10060, Candiolo, Torino, Italy
    6. Laboratory of Membrane Trafficking, Candiolo Cancer Institute – FPO IRCCS, 10060, Candiolo, Torino, Italy
    7. Experimental Clinical Molecular Oncology, Candiolo Cancer Institute – FPO IRCCS, 10060, Candiolo, Torino, Italy
    8. Istituto Nazionale di Biostrutture e Biosistemi, INBB, 00136, Rome, Italy
  • 刊物主题:Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1741-7007
文摘
Background Tankyrases are poly(adenosine diphosphate)-ribose polymerases that contribute to biological processes as diverse as modulation of Wnt signaling, telomere maintenance, vesicle trafficking, and microtubule-dependent spindle pole assembly during mitosis. At interphase, polarized reshaping of the microtubule network fosters oriented cell migration. This is attained by association of adenomatous polyposis coli with the plus end of microtubules at the cortex of cell membrane protrusions and microtubule-based centrosome reorientation towards the migrating front.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700