用户名: 密码: 验证码:
Numerical study on the effect of nerve control on upper airway collapse in obstructive sleep apnea
详细信息    查看全文
  • 作者:Qi-Guo Rong ; Shuang Ren ; Qi-Hong Li
  • 关键词:Upper airway collapse ; fluid ; structure interaction ; nerve control ; finite element analysis ; biomechanics
  • 刊名:International Journal of Automation and Computing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:13
  • 期:2
  • 页码:117-124
  • 全文大小:1,410 KB
  • 参考文献:[1]A. Malhotra, D. P. White. Obstructive sleep apnoea. The Lancet, vol. 360, no. 9328, pp. 237–245, 2002.CrossRef
    [2]I. Ayappa, D. M. Rapoport. The upper airway in sleep: Physiology of the pharynx. Sleep Medicine Reviews, vol.7, no. 1, pp. 9–33, 2003.CrossRef
    [3]M. S. Badr. Effect of ventilatory drive on upper airway patency in humans during NREM sleep. Respiration Physiology, vol. 103, no. 1, pp. 1–10, 1996.CrossRef
    [4]F. J. Trudo, W. B. Gefter, K. C. Welch, K. Gupta, G. Maislin, R. Schwab. State-related changes in upper airway caliber and surrounding soft-tissue structures in normal subjects. American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 4, pp. 1259–1270, 1998.CrossRef
    [5]M. Younes, M. Ostrowski, W. Thompson, C. Leslie, W. Shewchuk. Chemical control stability in patients with obstructive sleep apnea. American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 5, pp. 1181–1190, 2001.CrossRef
    [6]C. Jiang, A. Rojas, R. P. Wang, X. R. Wang. CO2 central chemosensitivity: Why are there so many sensing molecules? Respiratory Physiology & Neurobiology, vol. 145, no. 2–3, pp. 115–126, 2005.CrossRef
    [7]E. Nattie. CO2, brainstem chemoreceptors and breathing. Progress in Neurobiology, vol. 59, no. 4, pp. 299–331, 1999.CrossRef
    [8]D. K. Mulkey, R. L. Stornetta, M. C. Weston, J. R. Simmons, A. Parker, D. A. Bayliss, P. G. Guyenet. Respiratory control by ventral surface chemoreceptor neurons in rats. Nature Neuroscience, vol. 7, pp. 1360–1369, 2004.CrossRef
    [9]R. L. Horner. The neuropharmacology of upper airway motor control in the awake and asleep states: Implications for obstructive sleep apnoea. Respiratory Research, vol.2, no. 5, pp. 286–294, 2001.CrossRef
    [10]C. Haberthur, B. Fabry, D. Zappe, J. Guttmann. Effects of mechanical unloading/loading on respiratory loop gain and periodic breathing in man. Respiration Physiology, vol. 112, no. 1, pp. 23–36, 1998.CrossRef
    [11]J. Steier, C. J. Jolley, J. Seymour, K. Warda, Y. M. Luo, M. I. Polkeyd, J. Moxhama. Increased load on the respiratory muscles in obstructive sleep apnea. Respiratory Physiology & Neurobiology, vol. 171, no. 1, pp. 54–60, 2010.CrossRef
    [12]W. H. Chen, J. Y. Ye, D. M. Han, Y. H. Zhang, J. Y. Wang. End-tidal carbon dioxide concentration monitoring in obstructive sleep apnea patients. American Journal of Otolaryngology, vol. 32, no. 3, pp. 190–193, 2011.CrossRef
    [13]E. J. Kezirian, A. Boudewyns, D.W. Eisele, A. R. Schwartz, P. L. Smith, P. H. Van de Heyning, W. A. De Backer. Electrical stimulation of the hypoglossal nerve in the treatment of obstructive sleep apnea. Sleep Medicine Reviews, vol. 14, no. 5, pp. 299–305, 2010.CrossRef
    [14]R. H. Huang, X. P. Li, Q. G. Rong. Control mechanism for the upper airway collapse in patients with obstructive sleep apnea syndrome: A finite element study. Science China Life Sciences, vol. 56, no. 4, pp. 366–372, 2013.CrossRef
    [15]Q. G. Rong, S. Ren, Q. H. Li. Effect of upper airway shape on obstructive sleep apnea syndrome: Numerical simulation by fluid-structure interaction method. Journal of Mechanics in Medicine and Biology, vol. 13, no. 6, Article number 1340009, 2013.
    [16]Q. G. Rong, S. Ren, Q. H. Li. Modeling and simulation of the neural control on OSAS with fluid-structural interaction method. In Proceedings of International Conference on Life System Modeling and Simltion, and International Conference on Intelligent Computing for Sustainable energy and Environmnet, Shanghai, China, pp. 226–233, 2014.
    [17]R. H. Huang, Q. G. Rong. Respiration simulation of human upper airway for analysis of obstructive sleep apnea syndrome. Wuxi, China, vol. 6330, pp. 588–596, 2010.
    [18]L. X. Huang, S. J. Quinn, P. D. M. Ellis, J. E. Ffowcs Williams. Biomechanics of snoring. Endeavour, vol. 19, no. 3, pp. 96–100, 1995.CrossRef
    [19]C. Xu, M. J. Brennick, L. Dougherty, D.M. Wootton. Modeling upper airway collapse by a finite element model with regional tissue properties. Medical Engineering & Physics, vol. 31, no. 10, pp. 1343–1348, 2009.CrossRef
  • 作者单位:Qi-Guo Rong (1)
    Shuang Ren (1)
    Qi-Hong Li (2)

    1. Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
    2. Department of Stomatology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Computer Applications
    Computer-Aided Engineering and Design
    Chinese Library of Science
  • 出版者:Institute of Automation, Chinese Academy of Sciences, co-published with Springer-Verlag GmbH
  • ISSN:1751-8520
文摘
Obstructive sleep apnea syndrome (OSAS) is a respiratory disease characterized by the upper airway collapses and reopens repeatedly during sleep. Though the nerve control plays a key role in the upper airway collapse, it has been considered in previous studies only with lumped parameter models. Based on a finite element model including airway and surrounding structures, the effect of nerve control on the upper airway collapse was studied with fluid-structure interaction method. Spring elements were used to simulate the function of the muscle group. The simulation results show that the nerve control reduces the deformation of airway successfully and avoids the risk of OSAS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700