用户名: 密码: 验证码:
Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis
详细信息    查看全文
  • 作者:Yanjie Zhang ; Shuaijing Du ; Zijie Feng
  • 关键词:Chiral ionic liquids ; Capillary electrophoresis ; Enantiomeric separation ; Synergistic system ; Molecular modeling
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:408
  • 期:10
  • 页码:2543-2555
  • 全文大小:875 KB
  • 参考文献:1.Wang S, Dai Y, Wu J, Zhou J, Tang J, Tang W. Methoxyethylammonium monosubstituted β-cyclodextrin as the chiral selector for enantioseparation in capillary electrophoresis. J Chromatogr A. 2013;1277:84–92.CrossRef
    2.Deñola NL, Quiming NS, Catabay AP, Saito Y, Jinno K. Optimization of capillary electrophoretic enantioseparation for basic drugs with native β-CD as a chiral selector. Electrophoresis. 2006;27(12):2367–75.CrossRef
    3.Nishi H. Enantioselectivity in chiral capillary electrophoresis with polysaccharides. J Chromatogr A. 1997;792:327–47.CrossRef
    4.Maier V, Ranc V, Švidrnoch M, Petr J, Ševčík J, Tesařová E, et al. Study on the use of boromycin as a chiral selector in capillary electrophoresis. J Chromatogr A. 2012;1237:128–32.CrossRef
    5.Haginaka J. Enantiomer separation of drugs by capillary electrophoresis using proteins as chiral selectors. J Chromatogr A. 2000;875(1):235–54.CrossRef
    6.Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta. 2006;556(1):38–45.CrossRef
    7.Ding J, Welton T, Armstrong DW. Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem. 2004;76(22):6819–22.CrossRef
    8.Huang K, Zhang X, Armstrong DW. Ionic cyclodextrins in ionic liquid matrices as chiral stationary phases for gas chromatography. J Chromatogr A. 2010;1217(32):5261–73.CrossRef
    9.Marszałł MP, Kaliszan R. Application of ionic liquids in liquid chromatography. Crit Rev Anal Chem. 2007;37(2):127–40.CrossRef
    10.Li J, Han H, Wang Q, Liu X, Jiang S. Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis. Anal Chim Acta. 2010;674(2):243–8.CrossRef
    11.Jin Y, Chen C, Meng L, Chen J, Li M, Zhu Z. Simultaneous and sensitive capillary electrophoretic enantioseparation of three β-blockers with the combination of achiral ionic liquid and dual CD derivatives. Talanta. 2012;89:149–54.CrossRef
    12.Vaher M, Koel M, Kazarjan J, Kaljurand M. Capillary electrophoretic analysis of neutral carbohydrates using ionic liquids as background electrolytes. Electrophoresis. 2011;32(9):1068–73.CrossRef
    13.François Y, Varenne A, Juillerat E, Servais A-C, Chiap P, Gareil P. Nonaqueous capillary electrophoretic behavior of 2-aryl propionic acids in the presence of an achiral ionic liquid: a chemometric approach. J Chromatogr A. 2007;1138(1):268–75.CrossRef
    14.Zhang Q, Du Y, Du S. Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis. J Chromatogr A. 2014;1339:185–91.CrossRef
    15.François Y, Varenne A, Juillerat E, Villemin D, Gareil P. Evaluation of chiral ionic liquids as additives to cyclodextrins for enantiomeric separations by capillary electrophoresis. J Chromatogr A. 2007;1155(2):134–41.CrossRef
    16.Rousseau A, Florence X, Pirotte B, Varenne A, Gareil P, Villemin D, et al. Development and validation of a nonaqueous capillary electrophoretic method for the enantiomeric purity determination of a synthetic intermediate of new 3,4-dihydro-2,2-dimethyl-2H-1-benzopyrans using a single-isomer anionic cyclodextrin derivative and an ionic liquid. J Chromatogr A. 2010;1217(51):7949–55.CrossRef
    17.Wang B, He J, Bianchi V, Shamsi SA. Combined use of chiral ionic liquid and cyclodextrin for MEKC: part I. Simultaneous enantioseparation of anionic profens. Electrophoresis. 2009;30(16):2812–9.CrossRef
    18.Wang B, He J, Bianchi V, Shamsi SA. Combined use of chiral ionic liquid and CD for MEKC: part II. Determination of binding constants. Electrophoresis. 2009;30(16):2820–8.CrossRef
    19.Zhang J, Du Y, Zhang Q, Chen J, Xu G, Yu T, et al. Investigation of the synergistic effect with amino acid-derived chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis. J Chromatogr A. 2013;1316:119–26.CrossRef
    20.Zhang J, Du Y, Zhang Q, Lei Y. Evaluation of vancomycin-based synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti-inflamatory drugs by capillary electrophoresis. Talanta. 2014;119:193–201.CrossRef
    21.Zhang Q, Du Y. Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis. J Chromatogr A. 2013;1306:97–103.CrossRef
    22.Xu G, Du Y, Du F, Chen J, Yu T, Zhang Q, et al. Establishment and evaluation of the novel tetramethylammonium-L-hydroxyproline chiral ionic liquid synergistic system based on clindamycin phosphate for enantioseparation by capillary electrophoresis. Chirality. 2015;27(9):598–604.CrossRef
    23.Ma Z, Zhang L, Lin L, Ji P, Guo X. Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electrophoresis with an ephedrine-based ionic liquid as the chiral selector. Biomed Chromatogr. 2010;24(12):1332–7.CrossRef
    24.Rizvi SAA, Shamsi SA. Synthesis, characterization, and application of chiral ionic liquids and their polymers in micellar electrokinetic chromatography. Anal Chem. 2006;78(19):7061–9.CrossRef
    25.Tran CD, Mejac I. Chiral ionic liquids for enantioseparation of pharmaceutical products by capillary electrophoresis. J Chromatogr A. 2008;1204(2):204–9.CrossRef
    26.Stavrou IJ, Kapnissi-Christodoulou CP. Use of chiral amino acid ester-based ionic liquids as chiral selectors in CE. Electrophoresis. 2013;34(4):524–30.CrossRef
    27.Liu R, Du Y, Chen J, Zhang Q, Du S, Feng Z. Investigation of the enantioselectivity of tetramethylammonium L-hydroxyproline ionic liquid as a novel chiral ligand in ligand-exchange CE and ligand-exchange MEKC. Chirality. 2015;27(1):58–63.CrossRef
    28.Zhang Q, Du Y, Du S, Zhang J, Feng Z, Zhang Y, et al. Tetramethylammonium- lactobionate: a novel ionic liquid chiral selector based on saccharides in capillary electrophoresis. Electrophoresis. 2015;36(9-10):1216–23.CrossRef
    29.Bednarek E, Bocian W, Michalska K. NMR and molecular modeling study, as complementary techniques to capillary electrophoresis method to elucidate the separation mechanism of linezolid enantiomers. J Chromatogr A. 2008;1193(1):164–71.CrossRef
    30.Li W, Tan G, Zhao L, Chen X, Zhang X, Zhu Z, et al. Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: chiral recognition mechanism and mathematical model for predicting chiral separation. Anal Chim Acta. 2012;718:138–47.CrossRef
    31.Yu S, Lindeman S, Tran CD. Chiral ionic liquids: synthesis, properties, and enantiomeric recognition. J Org Chem. 2008;73(7):2576–91.CrossRef
    32.Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.CrossRef
    33.Sanner M, Huey R, Dallakyan S, Karnati S, Lindstrom W, Morris G, et al. (2007) AutoDockTools, version 1.4. 5. The Scripps Research Institute, La Jolla.
    34.Ravichandran S, Collins JR, Singh N, Wainer IW. A molecular model of the enantioselective liquid chromatographic separation of (R, S)-ifosfamide and its N-dechloroethylated metabolites on a teicoplanin aglycon chiral stationary phase. J Chromatogr A. 2012;1269:218–25.CrossRef
    35.Wang HY, Wang JJ, Zhang SL, Pei YC, Zhuo KL. Ionic association of the ionic liquids [C4mim][BF4], [C4mim][PF6], and [Cnmim]Br in molecular solvents. ChemPhysChem. 2009;10(14):2516–23.CrossRef
    36.Yee P, Shah JK, Maginn EJ. State of hydrophobic and hydrophilic ionic liquids in aqueous solutions: are the ions fully dissociated? J Phys Chem B. 2013;117(41):12556–66.CrossRef
    37.Shekaari H, Mousavi SS. Conductometric studies of aqueous ionic liquids, 1-alkyl-3-methylimidazolium halide, solutions at T= 298.15-328.15 K. Fluid Phase Equilib. 2009;286(2):120–6.CrossRef
    38.Katsuta S, Ogawa R, Yamaguchi N, Ishitani T, Takeda Y. Ion pair formation of 1-alkyl-3-methylimidazolium salts in water. J Chem Eng Data. 2007;52(1):248–51.CrossRef
    39.Yan C, Xiu Z, Li X, Hao C. Molecular modeling study of β-cyclodextrin complexes with (+)-catechin and (-)-epicatechin. J Mol Graph Model. 2007;26(2):420–8.CrossRef
  • 作者单位:Yanjie Zhang (1)
    Shuaijing Du (2)
    Zijie Feng (1)
    Yingxiang Du (1) (3) (4)
    Zhi Yan (1)

    1. Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
    2. College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
    3. Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
    4. State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
In recent years, chiral ionic liquids (CILs) have attracted more and more attention in the field of enantioseparation. In this study, two novel spirocyclic chiral ionic liquids, 1-butyl-3-methylimidazolium(T-4)-bis[(2S)-2-(hydroxy-κO)-3-methylbutanoato-κO]borate (BMIm+BLHvB−) and 1-butyl-3-methylimidazolium (T-4)-bis[(αS)-α-(hydroxy-κO)-4-methylbenzeneacetato-κO]borate (BMIm+BSMB−), were applied for the first time in capillary electrophoresis (CE) to establish synergistic systems for enantiomeric separation. Significantly improved separations of five tested analytes were observed in the CILs synergistic systems based on three β-cyclodextrin derivatives (CD), compared with conventional single CD separation systems. Several principal parameters such as CILs concentration, cyclodextrin concentration, buffer pH, and applied voltage were systematically investigated with BMIm+BLHvB−/hydroxypropyl-β-CD selected as a model system to optimize the enantioseparation. Molecular modeling was applied to further demonstrate the chiral recognition mechanism of the CILs/hydroxypropyl-β-CD synergistic system, which showed a good agreement with the experimental results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700