用户名: 密码: 验证码:
Influence of strong preformed particle gels on low permeable formations in mature reservoirs
详细信息    查看全文
  • 作者:Mahmoud O. Elsharafi ; Baojun Bai
  • 关键词:Formation damage ; Mature reservoirs ; Preformed particle gel ; Low permeable formations
  • 刊名:Petroleum Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:13
  • 期:1
  • 页码:77-90
  • 全文大小:4,040 KB
  • 参考文献:Al-Abduwani FAH, Shirzadi A, Currie PK. Formation damage vs. solid particles deposition profile during laboratory simulated produced-water reinjection. SPE J. 2005;10(2):138–51. doi:10.​2118/​112509-PA .CrossRef
    Al-Anaza HA, Sharma MM. Use of a pH sensitive polymer for conformance control. In: SPE international symposium and exhibition on formation damage control, February 20–21, Lafayette, LA; 2002. doi:10.​2118/​73782-MS .
    Ali M, Currie P, Salman M. The effect of residual oil on deep-bed filtration of particles in injection water. SPE Prod Oper. 2009;24(1):117–23. doi:10.​2118/​107619-PA .CrossRef
    Al-Muntasheri G, Nasr-El-Din HA, Al-Noaimi K, et al. A study of polyacrylamide-based gels crosslinked with polyethyleneimine. SPE J. 2009;14(2):245–51. doi:10.​2118/​105925-PA .CrossRef
    Al-Muntasheri G, Zitha PL. Gel under dynamic stress in porous media: new insights using computed tomography. In: SPE Saudi Arabia section technical symposium, 9–11 May, Al Khobar, Saudi Arabia; 2009. doi:10.​2118/​126068-MS .
    Al-Muntasheri G, Zitha PL, Nasr-El-Din HA. A new organic gel system for water control: a computed tomography study. SPE J. 2010;15(1):197–207. doi:10.​2118/​129659-PA .CrossRef
    Azizi T, Jin W, Rahman SS. Management of formation damage by improved mud design. In: SPE Asia Pacific oil and gas conference and exhibition, 14–16 April, Kuala Lumpur, Malaysia; 1997. doi:10.​2118/​38039-MS .
    Bailey B, Crabtree M, Elphick J, Kuchuk F, et al. Water control. Oilfield Rev. 2000;12:30–51.
    Bai B, Liu Y, Coste JP, et al. Preformed particle gel for conformance control: transport mechanism through porous media. SPE Reservoir Eval Eng. 2007a;10(2):176–84. doi:10.​2118/​89468-PA .CrossRef
    Bai B, Li L, Liu Y, et al. Conformance control by preformed particle gel: factors affecting its properties and applications. SPE Reservoir Eval Eng. 2007b;10(4):415–21. doi:10.​2118/​89389-PA .CrossRef
    Bai B, Huang F, Liu Y, et al. Case study of preformed particle gel for in-depth fluid diversion. In: SPE/DOE symposium on improved oil recovery, 20–23 April, Tulsa, Oklahoma; 2008. doi:10.​2118/​113997-MS .
    Bai B, Zhang H, Shuler P, et al. Preformed particle gel for conformance control. Final report, RPSEA, Contract Number 07123‐2; 2012. www.​netl.​doe.​gov .
    Chauveteau G, Omari A, Tabary R, et al. Controlling gelation time and microgel size for water shutoff. In: SPE/DOE improved oil recovery symposium, 3–5 April, Tulsa, Oklahoma; 2000. doi:10.​2118/​59317-MS .
    Chauveteau G, Omari A, Bordeaux U, et al. New size-controlled microgels for oil production. In: SPE international symposium on oilfield chemistry, 13–16 February, Houston, TX; 2001. doi:10.​2118/​64988-MS .
    Coleman R, McLelland G. Produced water re-injection: how clean is clean?. In: SPE formation damage control symposium, 7–10 February, Lafayette, Louisiana; 1994. doi:10.​2118/​27394-MS .
    Coste JP, Liu Y, Bai B, et al. In-depth fluid diversion by pre-gelled particles: laboratory study and pilot testing. In: SPE/DOE improved oil recovery symposium, 3–5 April, Tulsa, Oklahoma; 2000. doi:10.​2118/​59362-MS .
    Dalrymple ED. Water control treatment design technology. In: SPE at the 15th world petroleum congress, 12–17 October, Beijing; 1997.
    Elgmati M, Zhang H, Bai B, et al. Submicron-pore characterization of shale gas plays. In: SPE at North American unconventional gas conference and exhibition, 14–16 June, Woodlands, TX; 2011. doi:10.​2118/​144050-MS .
    Elsharafi M, Bai B. Effect of weak preformed particle gel on unswept oil zones/areas during conformance control treatments. Ind Eng Chem Res. 2012;51(35):11547–54. doi:10.​1021/​ie3007227 .CrossRef
    Elsharafi M. Minimizing formation damage for preformed particle gels treatment in mature reservoirs. Dissertation, Missouri University of Science and Technology; 2013.
    Elsharafi M, Bai, B. Gel pack—a novel concept to optimize preformed particle gel conformance control treatment design. In: The 62nd southwestern petroleum conference, 22–23 April, Lubbock, TX; 2015. doi:10.​2118/​38039-MS .
    Ershaghi I, Hashemi R, Caothien SC, et al. Injectivity losses under particle cake buildup and particle invasion. In: SPE California regional meeting, 2–4 April, Oakland, CA; 1986. doi:10.​2118/​15073-MS .
    Frampton H, Morgan JC, Cheung SK, et al. Development of a novel waterflood conformance control system. In: SPE/DOE 14th symposium on improved oil recovery, 17–21 April, Tulsa, Oklahoma; 2004. doi:10.​2118/​89391-MS .
    Gomaa AM, Mahmoud MA, Nasr-El-Din HA. Laboratory study of diversion using polymer-based in situ-gelled acids. SPE Prod Oper. 2011;26(3):278–90. doi:10.​2118/​132535-PA .CrossRef
    Gomaa AM, Nasr-El-Din HA. New insights into the viscosity of polymer-based in situ gelled acids. SPE Prod Oper. 2010;25(3):367–75. doi:10.​2118/​121728-PA .CrossRef
    Hong SD. Basics of reservoir petrophysics. Beijing: Petroleum Industry Publishing Company; 1985. p. 65–8 (in Chinese).
    Hsi D, Dudzik S, Lane H, et al. Formation injectivity damage due to produced water reinjection. In: SPE formation damage control symposium, 7–10 February, Lafayette, Louisiana; 1994. doi:10.​2118/​27395-MS .
    Huh C, Choi SK, Sharma MM. A rheological model for pH-sensitive ionic polymer solutions for optimal mobility-control applications. In: SPE annual technical conference and exhibition, 9–12 October, Dallas, TX; 2005. doi:10.​2118/​96914-MS .
    Huh CU, Choi SK, Shrman MM. pH sensitive polymers for novel conformance control and polymer flood applications. In: SPE international symposium oilfields chemistry, 20–22 April, Woodlands, TX; 2009. doi:10.​2118/​121686-MS .
    James JS. Modern chemical enhanced oil recovery theory and practice. Houston: Gulf Professional Publishing; 2011. p. 101–206. doi:10.​1016/​B978-1-85617-745-0.​00001-2 .
    Jia H, Pu W, Zhao J, et al. Experimental investigation of the novel phenol–formaldehyde cross-linking HPAM gel system: based on the secondary cross-linking method of organic cross-linkers and its gelation performance study after flowing through porous media. Energy Fuels. 2011;25(1):727–36. doi:10.​1021/​ef101334y .CrossRef
    Juntail S, Abdoljalil V, Chun H, et al. Viscosity model of preformed microgels for conformance and mobility control. Energy Fuels. 2011a;25(1):5033–7. doi:10.​1021/​ef200408u .
    Juntail S, Abdoljalil V, Chun H, et al. Transport model implementation and simulation of microgel processes for conformance and mobility control purposes. Energy Fuels. 2011b;25(1):5063–75. doi:10.​1021/​ef200835c .
    Larkin R, Creel P. Methodologies and solutions to remediate inner-well communication problems on the SACROC CO2 EOR project: a case study. In: SPE/DOE symposium on improved oil recovery, 20–23 April, Tulsa, Oklahoma; 2008. doi:10.​2118/​113305-MS .
    Legemah M, Guerin M, Sun H, et al. Novel high-efficiency boron crosslinkers for low-polymer-loading fracturing fluids. SPE J. 2014;19(4):737–43. doi:10.​2118/​164118-PA .CrossRef
    Lei G, Li L, Nasr-El-Din H. New gel aggregates for water shut-off treatments. In: SPE improved oil recovery symposium, 24–28 April, Tulsa, Oklahoma; 2010. doi:10.​2118/​129960-MS .
    Liu Y, Bai B, Wang Y. Applied technologies and prospects of conformance control treatments in China. Oil Gas Sci Technol. 2010;65(6):1–20. doi:10.​2516/​ogst/​2009057 .CrossRef
    Nemec R. Water, water everywhere in California oil production. NGI Shale Daily. 2014, Articles 99848. www.​naturalgasintel.​com .
    Pritchett J, Frampton H, Brinkman J, et al. Field application of a new in-depth waterflood conformance improvement tool. In: SPE international improved oil recovery conference in Asia Pacific, 20–21 October, Kuala Lumpur, Malaysia; 2003. doi:10.​2118/​84897-MS .
    Pyziak D, Smith D. Update on Anton Irish conformance effort. In: The 6th international conference on production optimization-reservoir-profile control-water and gas shutoff, 7–9 November, Houston, TX; 2007. doi:10.​2118/​103044-MS .
    Rabie AI, Gomaa AM, Nasr-El-Din HA. Reaction of in situ gelled acids with calcite: reaction rate study. SPE J. 2011;16(4):981–92. doi:10.​2118/​133501-PA .CrossRef
    Rabie AI, Gomaa AM, Nasr-El-Din HA. HCl/formic in situ-gelled acids as diverting agents for carbonate acidizing. SPE Prod Oper. 2012;27(2):170–84. doi:10.​2118/​140138-PA .CrossRef
    Reddy BR. Laboratory characterization of gel filter cake and development of nonoxidizing gel breakers for zirconium-crosslinked fracturing fluids. SPE J. 2014;19(4):662–73. doi:10.​2118/​164116-PA .CrossRef
    Rousseau D, Chauveteau G, Renard M, et al. Rheology and transport in porous media of new water shutoff/conformance control microgels. In: SPE international symposium on oilfield chemistry, 2–4 February, Houston, TX; 2005. doi:10.​2118/​93254-MS .
    Roussennac B, Toschi C. Brightwater trial in Salema Field (Campos Basin, Brazil). In: SPE EUROPEC/EAGE annual conference and exhibition, 14–17 June, Barcelona, Spain; 2010. doi:10.​2118/​131299-MS .
    Seright RS. Washout of Cr(III)–acetate–HPAM gels from fractures. In: SPE international symposium on oilfield chemistry, 5–7 February, Houston, TX; 2003. doi:10.​2118/​80200-MS .
    Smith D, Giraud M, Kemp C, et al. The successful evolution of Anton Irish conformance efforts. In: SPE annual technical conference and exhibition, 24–27 September, San Antonio, TX; 2006. doi:10.​2118/​103044-MS .
    Sun Y, Wu Q, Wei M. Experimental study of friction reducer flows in microfracture. Fuel. 2014;131(1):28–35. doi:10.​1016/​j.​fuel.​2014.​04.​050 .CrossRef
    Sydansk RD, Xiong Y, Al-Dhafeeri AM. Characterization of partially formed polymer gels for application to fractured production wells for water-shutoff purposes. SPE Prod Facil. 2005;20(3):240–9. doi:10.​2118/​89401-PA .CrossRef
    Thomas FB, Bennion DB, Anderson GE. Water shut-off treatments reduce water and accelerate oil production. J Can Pet Technol. 2000;39(4):25–9. doi:10.​2118/​00-04-TN .CrossRef
    Veil JA, Puder MG, Elcock D. A white paper describing produced water from production of crude oil, natural gas and coal bed methane. Technical report prepared for National Energy Technology Laboratory (U.S DOE, under Contract No. W-31-109-Eng-38), Argonne National Laboratory, Argonne, IL; 2004.
    Vetter O J, Kandarpa V, Stratton M, et al. Particle invasion into porous medium and related injectivity problems. In: SPE international symposium on oilfield chemistry, 4–6 February, San Antonio, TX; 1987. doi:10.​2118/​16255-MS .
    Wang Y, Bai B, Gao H, et al. Enhanced oil production through a combined application of gel treatment and surfactant huff’n’ puff technology. In: SPE international symposium and exhibition on formation damage control, 13–15 February, Lafayette, Louisiana; 2008. doi:10.​2118/​112495-MS .
    Wiedeman A. Regulation of produced water by the U.S. Environmental Protection Agency. In: Reed M, Johnsen S, editors. Produced water 2: environmental issues and mitigation technologies. New York: Plenum Press; 1996.
    Wu Y, Tang T, Bai B, et al. An experimental study of interaction between surfactant and particle hydrogels. Polymer. 2011;52(2):452–60. doi:10.​1016/​j.​polymer.​2010.​12.​003 .CrossRef
    Zaitoun A, Tabary R, Rousseau D, et al. Using microgels to shutoff water in gas storage wells. In: SPE international symposium on oilfield chemistry, February 28–March 2, Houston, TX; 2007. doi:10.​2118/​106042-MS .
    Zhang H, Challa R, Bai B, et al. Using screening test results to predict the effective viscosity of swollen superabsorbent polymer particles extrusion through an open fracture. Ind Eng Chem Res. 2010;49(23):12284–93. doi:10.​1021/​ie100917m .CrossRef
    Zhang H, Bai B. Preformed particle gel transport through open fractures and its effect on water flow. SPE J. 2011;16(2):388–400. doi:10.​2118/​129908-PA .CrossRef
    Zitha PL, Darwish M. Effect of bridging adsorption on the placement of gels for water control. In: SPE Asia Pacific improved oil recovery conference, 25–26 October, Kuala Lumpur, Malaysia; 1999. doi:10.​2118/​57269-MS .
  • 作者单位:Mahmoud O. Elsharafi (1)
    Baojun Bai (2)

    1. McCoy School of Engineering, Midwestern State University, Wichita Falls, TX, 76308, USA
    2. Department of Geological Sciences & Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
  • 刊物主题:Mineral Resources; Industrial Chemistry/Chemical Engineering; Industrial and Production Engineering; Energy Economics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1995-8226
文摘
In mature reservoirs, the success of preformed particle gel (PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations, but not damage the low permeable formations. Static test models (filtration test model and pressure test model) were used to determine the effect of PPG on low permeable formations. This work used a strong preformed particle gel, Daqing (DQ) gel made by a Chinese company. The particle gel sizes were ranged from 30 to 120 mesh for this work. PPGs are sized in a millimeter or micrometer, which can absorb over a hundred times their weight in liquids. The gel strength was approximately 6500 Pa for a completely swollen PPG with 1 % (weight percentage) NaCl solution (brine). 0.05 %, 1 %, and 10 % NaCl solutions were used in experiments. Sandstone core permeability was measured before and after PPG treatments. The relationship between cumulative filtration volumes versus filtration times was determined. The results indicate that DQ gels of a particle size of 30–80 mesh did not damage the cores of a low permeability of 3–25 mD. The DQ gels of a smaller particle size ranging from 100 to 120 mesh damaged the core and a cake was formed on the core surface. The results also indicate that more damage occurred when a high load pressure (400 psi) was applied on the high permeability cores (290–310 mD). The penetration of the particle gels into the low permeable formations can be decreased by the best selection of gel types, particle sizes, and brine concentrations. Keywords Formation damage Mature reservoirs Preformed particle gel Low permeable formations

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700