用户名: 密码: 验证码:
Phylogenomics of Mycobacterium Nitrate Reductase Operon
详细信息    查看全文
  • 作者:Qinqin Huang ; Abualgasim Elgaili Abdalla ; Jianping Xie
  • 刊名:Current Microbiology
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:71
  • 期:1
  • 页码:121-128
  • 全文大小:1,064 KB
  • 参考文献:1.Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V, Chippaux M (1990) Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol Gen Genet 222(1):104鈥?11PubMed
    2.Knowles R (1982) Denitrification. Microbiol Rev 46(1):43鈥?0PubMed Central PubMed
    3.WHO publishes Global tuberculosis report 2013 (2013). Euro Surveill 18 (43). doi:20615 [pii]
    4.Chan J, Xing Y, Magliozzo RS, Bloom BR (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175(4):1111鈥?122PubMed View Article
    5.MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94(10):5243鈥?248. doi:10.鈥?073/鈥媝nas.鈥?4.鈥?0.鈥?243 PubMed Central PubMed View Article
    6.Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, Sassetti CM (2013) Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nat Immunol 14(1):52鈥?0. doi:10.鈥?038/鈥媙i.鈥?474 PubMed Central PubMed View Article
    7.Jung JY, Madan-Lala R, Georgieva M, Rengarajan J, Sohaskey CD, Bange FC, Robinson CM (2013) The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun 81(9):3198鈥?209. doi:10.鈥?128/鈥婭AI.鈥?0611-13 PubMed Central PubMed View Article
    8.Deturk WE, Bernheim F (1958) Effects of ammonia, methylamine, and hydroxylamine on the adaptive assimilation of nitrite and nitrate by a Mycobacterium. J Bacteriol 75(6):691鈥?96PubMed Central PubMed
    9.Gonzalez PJ, Correia C, Moura I, Brondino CD, Moura JJ (2006) Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100(5鈥?):1015鈥?023. doi:10.鈥?016/鈥媕.鈥媕inorgbio.鈥?005.鈥?1.鈥?24 PubMed View Article
    10.Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G (1998) NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol 28(3):435鈥?47PubMed View Article
    11.Lanciano P, Vergnes A, Grimaldi S, Guigliarelli B, Magalon A (2007) Biogenesis of a respiratory complex is orchestrated by a single accessory protein. J Biol Chem 282(24):17468鈥?7474. doi:10.鈥?074/鈥媕bc.鈥婱700994200 PubMed View Article
    12.Magalon A, Fedor JG, Walburger A, Weiner JH (2011) Molybdenum enzymes in bacteria and their maturation. Coordin Chem Rev 255(9鈥?0):1159鈥?178. doi:10.鈥?016/鈥媕.鈥媍cr.鈥?010.鈥?2.鈥?31 View Article
    13.Rothery RA, Bertero MG, Spreter T, Bouromand N, Strynadka NC, Weiner JH (2010) Protein crystallography reveals a role for the FS0 cluster of Escherichia coli nitrate reductase A (NarGHI) in enzyme maturation. J Biol Chem 285(12):8801鈥?807. doi:10.鈥?074/鈥媕bc.鈥婱109.鈥?66027 PubMed Central PubMed View Article
    14.Sodergren EJ, DeMoss JA (1988) narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes. J Bacteriol 170(4):1721鈥?729PubMed Central PubMed
    15.Chiang RC, Cavicchioli R, Gunsalus RP (1997) 鈥楲ocked-on鈥?and 鈥榣ocked-off鈥?signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP. Mol Microbiol 24(5):1049鈥?060PubMed View Article
    16.Clegg S, Yu F, Griffiths L, Cole JA (2002) The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol Microbiol 44(1):143鈥?55PubMed View Article
    17.Giffin MM, Raab RW, Morganstern M, Sohaskey CD (2012) Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis. PLoS One 7(9):e45459. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?045459 PubMed Central PubMed View Article
    18.Sohaskey CD, Wayne LG (2003) Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185(24):7247鈥?256PubMed Central PubMed View Article
    19.Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Conner R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence (vol 393, p 537, 1998). Nature 396(6707):190鈥?98. doi:10.鈥?038/鈥?4206 View Article
    20.Hutter B, Dick T (1999) Up-regulation of narX, encoding a putative 鈥榝used nitrate reductase鈥?in anaerobic dormant Mycobacterium bovis BCG. FEMS Microbiol Lett 178(1):63鈥?9PubMed View Article
    21.Schnell R, Agren D, Schneider G (2008) 1.9 A structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 12):1096鈥?100. doi:10.鈥?107/鈥婼174430910803520鈥? PubMed Central PubMed View Article
    22.Hu Y, Coates AR (2001) Increased levels of sigJ mRNA in late stationary phase cultures of Mycobacterium tuberculosis detected by DNA array hybridisation. FEMS Microbiol Lett 202(1):59鈥?5PubMed View Article
    23.Lee H-N, Jung K-E, Ko I-J, Baik HS, Oh J-I (2012) Protein-protein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv. J Microbiol 50(2):270鈥?77. doi:10.鈥?007/鈥媠12275-012-2050-4 PubMed View Article
    24.Cho HY, Kang BS (2014) Serine 83 in DosR, a response regulator from Mycobacterium tuberculosis, promotes its transition from an activated, phosphorylated state to an inactive, unphosphorylated state. Biochem Biophys Res Commun 444(4):651鈥?55. doi:10.鈥?016/鈥媕.鈥媌brc.鈥?014.鈥?1.鈥?28 PubMed View Article
    25.Virtanen S (1960) A study of nitrate reduction by mycobacteria. The use of the nitrate reduction test in the identification of mycobacteria. Acta Tuberc Scand Suppl 48:1鈥?19PubMed View Article
    26.Wayne LG, Doubek JR (1965) Classification and identification of mycobacteria. II. Tests employing nitrate and nitrite as substrate. Am Rev Respir Dis 91:738鈥?45PubMed
    27.Stermann M, Sedlacek L, Maass S, Bange FC (2004) A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis. J Bacteriol 186(9):2856鈥?861PubMed Central PubMed View Article
    28.Stermann M, Bohrssen A, Diephaus C, Maass S, Bange FC (2003) Polymorphic nucleotide within the promoter of nitrate reductase (NarGHJI) is specific for Mycobacterium tuberculosis. J Clin Microbiol 41(7):3252鈥?259PubMed Central PubMed View Article
    29.Honaker RW, Stewart A, Schittone S, Izzo A, Klein MR, Voskuil MI (2008) Mycobacterium bovis BCG vaccine strains lack narK2 and narX induction and exhibit altered phenotypes during dormancy. Infect Immun 76(6):2587鈥?593. doi:10.鈥?128/鈥婭AI.鈥?1235-07 PubMed Central PubMed View Article
    30.Chauhan S, Singh A, Tyagi JS (2010) A single-nucleotide mutation in the -10 promoter region inactivates the narK2X promoter in Mycobacterium bovis and Mycobacterium bovis BCG and has an application in diagnosis. FEMS Microbiol Lett 303(2):190鈥?96. doi:10.鈥?111/鈥媕.鈥?574-6968.鈥?009.鈥?1876.鈥媥 PubMed View Article
    31.Sohaskey CD, Modesti L (2009) Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2. FEMS Microbiol Lett 290(2):129鈥?34. doi:10.鈥?111/鈥媕.鈥?574-6968.鈥?008.鈥?1424.鈥媥 PubMed View Article
    32.Tortoli E (2012) Phylogeny of the genus Mycobacterium: many doubts, few certainties. Infect Genet Evol 12(4):827鈥?31. doi:10.鈥?016/鈥媕.鈥媘eegid.鈥?011.鈥?5.鈥?25 PubMed View Article
    33.Devulder G, Perouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55(Pt 1):293鈥?02. doi:10.鈥?099/鈥媔js.鈥?.鈥?3222-0 PubMed View Article
    34.Dos Vultos T, Mestre O, Rauzier J, Golec M, Rastogi N, Rasolofo V, Tonjum T, Sola C, Matic I, Gicquel B (2008) Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis. PLoS One 3(2):e1538. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?001538 PubMed Central PubMed View Article
    35.Nishimura T, Teramoto H, Vertes AA, Inui M, Yukawa H (2008) ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol 190(9):3264鈥?273. doi:10.鈥?128/鈥婮B.鈥?1801-07 PubMed Central PubMed View Article
    36.Nishimura T, Teramoto H, Inui M, Yukawa H (2014) Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner. J Bacteriol 196(1):60鈥?9. doi:10.鈥?128/鈥婮B.鈥?1004-13 PubMed Central PubMed View Article
    37.Reents H, Gruner I, Harmening U, Bottger LH, Layer G, Heathcote P, Trautwein AX, Jahn D, Hartig E (2006) Bacillus subtilis Fnr senses oxygen via a [4Fe鈥?S] cluster coordinated by three cysteine residues without change in the oligomeric state. Mol Microbiol 60(6):1432鈥?445. doi:10.鈥?111/鈥媕.鈥?365-2958.鈥?006.鈥?5198.鈥媥 PubMed View Article
    38.Akhter Y, Yellaboina S, Farhana A, Ranjan A, Ahmed N, Hasnain SE (2008) Genome scale portrait of cAMP-receptor protein (CRP) regulons in mycobacteria points to their role in pathogenesis. Gene 407(1鈥?):148鈥?58. doi:10.鈥?016/鈥媕.鈥媑ene.鈥?007.鈥?0.鈥?17 PubMed View Article
    39.Spreadbury CL, Pallen MJ, Overton T, Behr MA, Mostowy S, Spiro S, Busby SJ, Cole JA (2005) Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation. Microbiology 151(Pt 2):547鈥?56. doi:10.鈥?099/鈥媘ic.鈥?.鈥?7444-0 PubMed View Article
    40.Niemann V, Koch-Singenstreu M, Neu A, Nilkens S, Gotz F, Unden G, Stehle T (2013) The NreA protein functions as a nitrate receptor in the Staphylococcal nitrate regulation system. J Mol Biol. doi:10.鈥?016/鈥媕.鈥媕mb.鈥?013.鈥?2.鈥?26 PubMed
    41.Florczyk MA, McCue LA, Purkayastha A, Currenti E, Wolin MJ, McDonough KA (2003) A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires rv3133c (dosR or devR) for expression. Infect Immun 71(9):5332鈥?343. doi:10.鈥?128/鈥婭ai.鈥?1.鈥?.鈥?332-5343.鈥?003 PubMed Central PubMed View Article
    42.McCaughey G, Gilpin DF, Schneiders T, Hoffman LR, McKevitt M, Elborn JS, Tunney MM (2013) Fosfomycin and tobramycin in combination downregulate nitrate reductase genes narG and narH, resulting in increased activity against Pseudomonas aeruginosa under anaerobic conditions. Antimicrob Agents Chemother 57(11):5406鈥?414. doi:10.鈥?128/鈥婣AC.鈥?0750-13 PubMed Central PubMed View Article
    43.Cunningham-Bussel A, Zhang T, Nathan CF (2013) Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci USA 110(45):E4256鈥揈4265. doi:10.鈥?073/鈥媝nas.鈥?316894110 PubMed Central PubMed View Article
    44.Weber I, Fritz C, Ruttkowski S, Kreft A, Bange FC (2000) Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol 35(5):1017鈥?025PubMed View Article
    45.Ma Y, Guo C, Li H, Peng XX (2013) Low abundance of respiratory nitrate reductase is essential for Escherichia coli in resistance to aminoglycoside and cephalosporin. J Proteomics 87:78鈥?8. doi:10.鈥?016/鈥媕.鈥媕prot.鈥?013.鈥?5.鈥?19 PubMed View Article
    46.Penuelas-Urquides K, Gonzalez-Escalante L, Villarreal-Trevino L, Silva-Ramirez B, Gutierrez-Fuentes DJ, Mojica-Espinosa R, Rangel-Escareno C, Uribe-Figueroa L, Molina-Salinas GM, Davila-Velderrain J, Castorena-Torres F, Bermudez de Leon M, Said-Fernandez S (2013) Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis. Curr Microbiol 67(3):362鈥?71. doi:10.鈥?007/鈥媠00284-013-0376-8 PubMed View Article
    47.Cunningham-Bussel A, Bange FC, Nathan CF (2013) Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide. Microbiologyopen 2(6):901鈥?11. doi:10.鈥?002/鈥媘bo3.鈥?26 PubMed Central PubMed View Article
    48.Wade MM, Zhang Y (2004) Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J Med Microbiol 53(Pt 8):769鈥?73PubMed View Article
    49.Sohaskey CD (2008) Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 190(8):2981鈥?986. doi:10.鈥?128/鈥婮B.鈥?1857-07 PubMed Central PubMed View Article
    50.McCollister BD, Hoffman M, Husain M, Vazquez-Torres A (2011) Nitric oxide protects bacteria from aminoglycosides by blocking the energy-dependent phases of drug uptake. Antimicrob Agents Chemother 55(5):2189鈥?196. doi:10.鈥?128/鈥婣AC.鈥?1203-10 PubMed Central PubMed View Article
    51.Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325(5946):1380鈥?384. doi:10.鈥?126/鈥媠cience.鈥?175439 PubMed Central PubMed View Article
    52.Angeby KA, Klintz L, Hoffner SE (2002) Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol 40(2):553鈥?55PubMed Central PubMed View Article
    53.Martin A, Imperiale B, Ravolonandriana P, Coban AY, Akgunes A, Ikram A, Satti L, Odoun M, Pandey P, Mishra M, Affolabi D, Singh U, Rasolofo V, Morcillo N, Vandamme P, Palomino JC (2014) Prospective multicentre evaluation of the direct nitrate reductase assay for the rapid detection of extensively drug-resistant tuberculosis. J Antimicrob Chemother 69(2):441鈥?44. doi:10.鈥?093/鈥媕ac/鈥媎kt353 PubMed View Article
    54.Nilkens S, Koch-Singenstreu M, Niemann V, Gotz F, Stehle T, Unden G (2014) Nitrate/oxygen co-sensing by an NreA/NreB sensor complex of Staphylococcus carnosus. Mol Microbiol 91(2):381鈥?93. doi:10.鈥?111/鈥媘mi.鈥?2464 PubMed View Article
  • 作者单位:Qinqin Huang (1)
    Abualgasim Elgaili Abdalla (1) (2)
    Jianping Xie (1)

    1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 1 Rd Tiansheng, Beibei, Chongqing, 400715, People鈥檚 Republic of China
    2. Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1432-0991
文摘
NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700