用户名: 密码: 验证码:
A Study of Hydrogen Accumulation in Multiwall Carbon Nanotubes by Electrochemical Techniques
详细信息    查看全文
  • 作者:L. E. Tsygankova ; V. I. Vigdorovich…
  • 刊名:Protection of Metals and Physical Chemistry of Surfaces
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:211-217
  • 全文大小:677 KB
  • 参考文献:1.Iijima, S., Nature, 1991, vol. 354, p. 56.CrossRef
    2.Fialkov, A.S., Formirovanie struktury i svoistva uglegrafitovykh materialov (Structuring and Properties of Coal-Graphite Materials), Moscow: Metallurgiya, 1965.
    3.Fialkov, A.S., Uglegrafitovye materialy (Coal-Graphite Materials), Moscow: Energiya, 1979.
    4.Pechkovskaya, K.A., Sazha kak usilitel’ kauchuka (The Implementation of Soot for Reinforcement of Caoutchouc), Moscow: Khimiya, 1968.
    5.Tarasevich, Yu.G., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbo Materials), Moscow: Nauka, 1984.
    6.Shvartsman, A.S. and Fialkov, A.S., Zh. Prikl. Khim., 1987, vol. 60, p. 1559.
    7.Varentsov, V.K. and Varentsova, V.I., Khim. Interesakh Ustoich. Razvit., 2000, vol. 8, no. 3, p. 353.
    8.Varentsov, V.K. and Varentsova, V.I., Russ. J. Appl. Chem., 2000, vol. 73, no. 10, p. 1742.
    9.Varenstov, V.K. and Varentsova, V.I., Russ. J. Electrochem., 2001, vol. 37, no. 7, p. 690.CrossRef
    10.Varenstov, V.K., Varentsova, V.I., Bataev I.A. Yusin S.I., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 1, p. 43.CrossRef
    11.Shibaev, D.A., Orlov, V.Yu., Bazlov, D.A., and Vaganov, V.Yu., Khim. Khim. Tekhnol., 2011, vol. 54, no. 7, p. 38.
    12.Vigdorovich, V.I., Tsygankova, L.E., Aleksashina, E.V., and Gladysheva, I.E., Korroz.: Mater., Zashch., 2010, no. 1, p. 8.
    13.Vigdorovich, V.I., Tsygankova, L.E., Kichigin, V.I., and Gladysheva, I.E., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 207.CrossRef
    14.Vigdorovich. V.I., Tsygankova, L.E., Kichigin, V.I., and Gladysheva, I.E., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 438.CrossRef
    15.Tsygankova, L.E., Aleksashina, E.V., Gladysheva, I.E., and Vigdorovich, V.I., Kondens. Sredy Mezhfaznye Granitsy, 2009, vol. 11, no. 3, p. 249.
    16.Bannov, A.G., Varentsov, V.K., Chukanov, I.S., Gorodilova, E.V., and Kuvshinov, G.G., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 2, p. 199.CrossRef
    17.Pan, W., Zhang, X., Li, S., et al., Int. J. Hydrogen Energy, 2005, vol. 30, p. 719.CrossRef
    18.Zhou, L., Zhou, Y., and Sun, Y., Int. J. Hydrogen Energy, 2006, vol. 31, p. 259.CrossRef
    19.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., et al., Nature, 1997, vol. 386, p. 377.CrossRef
    20.Ye, Y., Ahn, C.C., Witham, C., et al., Appl. Phys. Lett., 1999, vol. 74, p. 2307.CrossRef
    21.Liu, C., Fan, Y.Y., Liu, M., et al., Science, 1999, vol. 286, p. 1127.CrossRef
    22.Darkrim, F.L., Malbrunot, P., and Tartaglia, G.P., Int. J. Hydrogen Energy, 2002, vol. 27, p. 193.CrossRef
    23.Nutzenadel, C., Zuttel, A., Chartouni, D., and Schlapbach, L., Electrochem. Solid-State Lett., 1999, vol. 2, p. 30.CrossRef
    24.Vix-Guterl, C., Frackowiak, E., Jurewicz, K., et al., Carbon, 2005, vol. 43, p. 1293.CrossRef
    25.Zhang, H., Fu, X., Chen, Y., et al., Physica B, 2004, vol. 352, p. 66.CrossRef
    26.Chen, X., Zhang, Y., Gao, X.P., et al., Int. J. Hydrogen Energy, 2004, vol. 29, p. 743.CrossRef
    27.Qin, X., Gao, X.P., Liu, H., et al., Electrochem. Solid- State Lett., 2000, vol. 3, p. 532.CrossRef
    28.Rajalakshmi, N., Dhathathreyan, K.S., Govindaraj, A., and Satishkumar, B.C., Electrochim. Acta, 2000, vol. 45, p. 4511.CrossRef
    29.Fazle Kibria, A.K.M., Mo, Y.H., Park, K.S., et al., Int. J. Hydrogen Energy, 2001, vol. 26, p. 823.CrossRef
    30.Gundiah, G., Govindaraj, A., Rajalakshmi, N., et al., J. Mater. Chem., 2003, vol. 13, p. 209.CrossRef
    31.Lee, S.M., Park, K.S., Choi, Y.C., et al., Synth. Met., 2000, vol. 113, p. 209.CrossRef
    32.Zuttel, A., Sudan, P., Mauron, P., et al., Int. J. Hydrogen Energy, 2002, vol. 27, p. 203.CrossRef
    33.Jones, C.P., Jurkschat, K., Crossley, A., et al., Langmuir, 2007, vol. 23, p. 9501.CrossRef
    34.Niessen, R.A.H., de Longe, J., and Nottena, P.H.L., J. Electrochem. Soc., 2006, vol. 153, p. A1484.
    35.Solodkova, L.N., Lyakhov, B.F., Lipson, A.G., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 5, p. 524.CrossRef
    36.Tkachev, A.G., Perspekt. Mater., 2007, no. 3, p. 5.
    37.Devanathan, M.A.V. and Stachurski, Z., Zashch. Met., 1995, vol. 31, p. 441.
    38.Tsygankova, L.E., Vigdorovich, V.I., and Zvereva, A.A., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 669.CrossRef
    39.Lim, C. and Pyun, S.-I., Electrochim. Acta, 1993, vol. 38, p. 2645.CrossRef
    40.Lasia, A., in Modern Aspects of Electrochemistry, Conway, B. and White, R., Eds., New York: Kluwer, 2002, vol. 35, p. 1.
    41.Gabrielli, C., Grand, P.P., Lasia, A., and Perrot, H., J. Electrochem. Soc., 2004, vol. 151, p. A1925.
    42.Bockris, J.O.M., McBreen, J., and Nanis, L., J. Electrochem. Soc., 1965, vol. 112, p. 1025.CrossRef
    43.Harrington, D.A. and Conway, B.E., Electrochim. Acta, 1987, vol. 32, p. 1703.CrossRef
    44.Dull, D.L. and Nobe Ken, Corrosion, 1979, vol. 35, p. 535.CrossRef
    45.Saito, Y. and Nobe Ken, Corrosion, 1980, vol. 36, p. 178.CrossRef
    46.Zakroczymski, T., Scr. Mater., 1985, vol. 19, p. 521.
    47.Diard, J.-P., J. Electroanal. Chem., 2003, vol. 557, p. 19.CrossRef
    48.Bóbics, L., Sziráki, L., and Láng, G.G., Electrochem. Comm., 2008, vol. 10, p. 283.CrossRef
    49.McNabb, A. and Foster, P.K., Trans. Metall. Soc. AIME, 1963, vol. 227, p. 618.
  • 作者单位:L. E. Tsygankova (1)
    V. I. Vigdorovich (2)
    A. A. Zvereva (1)
    V. I. Kichigin (3)

    1. Derzhavin Tambov State University, ul. Internatsional’naya 33, Tambov, 392000, Russia
    2. All-Russian Scientific-Research Institute of Technics and Oil Products Usage in Agriculture, per. Novo-Rubezhnyi 28, Tambov, 392022, Russia
    3. Perm State University, Bukireva ul. 15, Perm, 614990, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Tribology, Corrosion and Coatings
    Materials Science
    Metallic Materials
    Inorganic Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:2070-206X
文摘
Accumulation of electrolytic hydrogen in alkaline medium (5 M KOH) by multiwall carbon nanotubes (MWCNTs) 20–60 nm in inner diameter and 2 μm in length obtained by catalytic pyrolysis of propane/butane mixture has been studied by means of the electrochemical diffusion technique, cyclic voltammetry, and impedance spectroscopy. MWCNTs were applied on a steel membrane and were encapsulated by a 10-nm electrolytic nickel layer. Cyclic voltammograms were recorded in the range of potentials from −1.2 to +0.2 V and contained a current peak in the cathode region corresponding to hydrogen absorption by nanotubes at −0.9 V and current peak in the anode region corresponding to oxidation of absorbed hydrogen at −0.6 V. Hydrogen storage capacity of MWCNTs varies from 4.6 to 6.5% depending on the amount of nanotubes according to electrochemical diffusion data. The electrochemical impedance data correlate with the results of the above methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700