用户名: 密码: 验证码:
A metameric origin for the annelid pygidium?
详细信息    查看全文
  • 作者:Viktor V Starunov (1) (2)
    Nicolas Dray (3)
    Elena V Belikova (1)
    Pierre Kerner (3)
    Michel Vervoort (3) (4)
    Guillaume Balavoine (3)

    1. Department of Invertebrate Zoology
    ; Saint-Petersburg State University/ Universitetskaya nab. 7/9 ; 199034 ; Saint-Petersburg ; Russia
    2. Zoological Institute RAS/ Universitetskaya nab. 1
    ; 199034 ; Saint-Petersburg ; Russia
    3. Institut Jacques Monod
    ; CNRS/Universit茅 Paris Diderot ; 15 rue H茅l猫ne Brion ; 75013 ; Paris ; France
    4. Institut Universitaire de France
    ; Paris ; France
  • 关键词:Polychaeta ; Pygidium ; Segmentation ; Origin of metamerism ; Cyclomeric theory ; Colonial theory ; Platynereis dumerilii
  • 刊名:BMC Evolutionary Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:5,262 KB
  • 参考文献:1. Balavoine, G, Adoutte, A (2003) The segmented urbilateria: a testable scenario. Integr Comp Biol 43: pp. 137-47 CrossRef
    2. Tautz, D (2004) segmentation. Dev Cell 7: pp. 301-12 CrossRef
    3. Couso, JP (2009) Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 53: pp. 1305-16 CrossRef
    4. Erwin, DH, Davidson, EH (2002) The last common bilaterian ancestor. Development 129: pp. 3021-32
    5. Wanninger, A (2008) Comparative lophotrochozoan neurogenesis and larval neuroanatomy: recent advances from previously neglected taxa. Acta Biol Hung 59: pp. 127-36 CrossRef
    6. Wanninger, A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the tetraneuralia concept. Biol Bull 216: pp. 293-306
    7. Stollewerk, A, Schoppmeier, M, Damen, WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423: pp. 863-5 CrossRef
    8. Chipman, AD, Akam, M (2008) The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues. Dev Biol 319: pp. 160-9 CrossRef
    9. Pueyo, JI, Lanfear, R, Couso, JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105: pp. 16614-9 CrossRef
    10. Prud鈥檋omme, B, Rosa, R, Arendt, D, Julien, J-F, Pajaziti, R, Dorresteijn, AWC (2003) Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr Biol 13: pp. 1876-81 CrossRef
    11. Saudemont, A, Dray, N, Hudry, B, Gouar, M, Vervoort, M, Balavoine, G (2008) Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol 317: pp. 430-43 CrossRef
    12. Dray, N, Tessmar-Raible, K, Gouar, M, Vibert, L, Christodoulou, F, Schipany, K (2010) Hedgehog signaling regulates segment formation in the annelid Platynereis. Science 329: pp. 339-42 CrossRef
    13. Niwa, N, Akimoto-Kato, A, Sakuma, M, Kuraku, S, Hayashi, S (2013) Homeogenetic inductive mechanism of segmentation in polychaete tail regeneration. Dev Biol 381: pp. 460-70 CrossRef
    14. Balavoine, G (2014) Segment formation in Annelids: patterns, processes and evolution. Int J Dev Biol 58: pp. 469-83 CrossRef
    15. Hessling, R, Westheide, W (2002) Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. J Morphol 252: pp. 100-13 CrossRef
    16. Struck, TH, Paul, C, Hill, N, Hartmann, S, H枚sel, C, Kube, M (2011) Phylogenomic analyses unravel annelid evolution. Nature 471: pp. 95-8 CrossRef
    17. Struck, TH, Schult, N, Kusen, T, Hickman, E, Bleidorn, C, Mchugh, D (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol Biol 7: pp. 57 CrossRef
    18. Dunn, CW, Hejnol, A, Matus, DQ, Pang, K, Browne, WE, Smith, SA (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452: pp. 745-9 CrossRef
    19. Weigert, A, Helm, C, Meyer, M, Nickel, B, Arendt, D, Hausdorf, B (2014) Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol 31: pp. 1391-401 CrossRef
    20. Gazave, E, B茅hague, J, Laplane, L, Guillou, A, Pr茅au, L, Demilly, A (2013) Posterior elongation in the annelid Platynereis dumerilii involves stem cells molecularly related to primordial germ cells. Dev Biol 382: pp. 246-67 CrossRef
    21. Rosa, R, Prud鈥檋omme, B, Balavoine, G (2005) Caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evol Dev 7: pp. 574-87 CrossRef
    22. Nielsen, C (2004) Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zool B Mol Dev Evol 302: pp. 35-68 CrossRef
    23. Nielsen, C (2005) Trochophora larvae and adult body regions in annelids: some conclusions. Hydrobiologia 535鈥?36: pp. 23-4
    24. Scholtz, G (2002) The Articulata hypothesis-or what is a segment?. Org Divers Evol 2: pp. 197-215 CrossRef
    25. Beesley, PL, Ross, GJB, Glasby, CJ (2000) Polychaetes & Allies: The Southern Synthesis. Fauna of Australia, Volume 4A, Polychaeta, Myzostomida, Pogonophora, Echiura, Sipuncula. CSIRO Publishing, Melbourne
    26. Rouse, GW, Pleijel, F (2001) Polychaetes. Oxford University Press, Oxford
    27. Hartmann-Schr枚der, G (1996) Annelida, Borstenw眉rmer, Polychaeta: Tierwelt Deuchlands, Tiel 58. Veb Gustav Fischer Verlag, Jena, Hamburg
    28. Jirkov, IA (2001) Polychaeta of the Arctic Ocean. Janus-K, Moscow
    29. Harrison, FW (1992) Microscopic Anatomy of Invertebrates, Volume 7, Annelida. Wiley-Liss, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto
    30. Zantke, J, Bannister, S, Rajan, VBV, Raible, F, Tessmar-Raible, K (2014) Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 197: pp. 19-31 CrossRef
    31. Fischer, AH, Henrich, T, Arendt, D (2010) The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 7: pp. 31 CrossRef
    32. Simionato, E, Kerner, P, Dray, N, Gouar, M, Ledent, V, Arendt, D (2008) Atonal- and achaete-scute-related genes in the annelid Platynereis dumerilii: insights into the evolution of neural basic-Helix-Loop-Helix genes. BMC Evol Biol 8: pp. 170 CrossRef
    33. Denes, AS, J茅kely, G, Steinmetz, PRH, Raible, F, Snyman, H, Prud鈥檋omme, B (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129: pp. 277-88 CrossRef
    34. Demilly, A, Simionato, E, Ohayon, D, Kerner, P, Garc猫s, A, Vervoort, M (2011) Coe genes are expressed in differentiating neurons in the central nervous system of protostomes. PLoS One 6: pp. e21213 CrossRef
    35. Nielsen, C (1987) Structure and Function of Metazoan Ciliary Bands and Their Phylogenetic Significance. Acta Zool 68: pp. 205-62 CrossRef
    36. M眉ller, MCM (2006) Polychaete nervous systems: Ground pattern and variations鈥揷LS microscopy and the importance of novel characteristics in phylogenetic analysis. Integr Comp Biol 46: pp. 125-33 CrossRef
    37. M眉ller, MCM, Westheide, W (2002) Comparative analysis of the nervous systems in presumptive progenetic dinophilid and dorvilleid polychaetes (Annelida) by immunohistochemistry and cLSM. Acta Zool 83: pp. 33-48 CrossRef
    38. Orrhage, L, M眉ller, MCM (2005) Morphology of the nervous system of Polychaeta (Annelida). Hydrobiologia 535鈥?36: pp. 79-111
    39. M眉ller, MCM, Henning, L (2004) Ground plan of the polychaete brain鈥揑. Patterns of nerve development during regeneration in Dorvillea bermudensis (Dorvilleidae). J Comp Neurol 471: pp. 49-58 CrossRef
    40. Voronezhskaya, EE, Tsitrin, EB, Nezlin, LP (2003) Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol 455: pp. 299-309 CrossRef
    41. McDougall, C, Chen, W-C, Shimeld, SM, Ferrier, DEK (2006) The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes. Front Zool 3: pp. 16 CrossRef
    42. Helm, C, Schemel, S, Bleidorn, C (2013) Temporal plasticity in annelid development鈥搊ntogeny of Phyllodoce groenlandica (Phyllodocidae, Annelida) reveals heterochronous patterns. J Exp Zool B Mol Dev Evol 320: pp. 166-78 CrossRef
    43. Voronezhskaya, EE, Ivashkin, EG (2010) Pioneer neurons: A basis or limiting factor of lophotrochozoa nervous system diversity?. Russ J Dev Biol 41: pp. 337-46 CrossRef
    44. Ivashkin, EG, Voronezhskaya, EE, Adameyko, I (2014) Paradigm shift: peripheral neurons deliver cellular matherial and control development. Zoology 117: pp. 293-4 CrossRef
    45. Orrhage, L (1993) On the Microanatomy of the Cephalic Nervous System of Nereidae (Polychaeta), with a Preliminary Discussion of Some Earlier Theories on the Segmentation of the Polychaete Brain. Acta Zool 74: pp. 145-72 CrossRef
    46. Winchell, CJ, Valencia, JE, Jacobs, DK (2010) Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae). Front Zool 7: pp. 17 CrossRef
    47. Purschke, G, Arendt, D, Hausen, H, M眉ller, MCM (2006) Photoreceptor cells and eyes in Annelida. Arthropod Struct Dev 35: pp. 211-30 CrossRef
    48. Tzetlin, AB, Filippova, AV (2005) Muscular system in polychaetes (Annelida). Hydrobiologia 535鈥?36: pp. 113-26
    49. Purschke, G, M眉ller, MCM (2006) Evolution of body wall musculature. Integr Comp Biol 46: pp. 497-507 CrossRef
    50. Golding, DW (1967) Endocrinology, regeneration and maturation in Nereis. Biol Bull 133: pp. 567-77 CrossRef
    51. Baskin, DG (1976) Neurosecretion and the Endocrinology of Nereid Polychaetes. Integr Comp Biol 16: pp. 107-24 CrossRef
    52. Hofmann, DK (1966) Untersuchungen zur regeneration des hinterendes bei Platynereis dumerilii (Audouin et Milne-Edwards)(Annelida, Polychaeta). Zool Jb Abt Allg Zool Physiol 72: pp. 374-430
    53. Hofmann, DK (1976) Regeneration and endocrinology in the polychaete Platynereis dumerilii. Dev Genes Evol 180: pp. 47-71
    54. Bartolomaeus, T (1994) On the ultrastructure of the coelomic lining in the Annelida, Sipuncula and Echiura. Microfauna Mar 9: pp. 171-220
    55. Boilly, B (1974) Mode d'action du cerveau sur la r茅g茅n茅ration caudale de Nereis diversicolor O.F. M眉ller (Ann茅lide Polych猫te). Wilhelm Roux' Archiv 174: pp. 195-209 CrossRef
    56. Starunov, VV, Lavrova, OB, Tikhomirov, IA (2010) Primary heteronomy of segments in polychaetes and the growth of Nereis virens [in russian]. Vestn Saint-petersbg Univ Ser 3 Biol 2: pp. 13-20
    57. Anderson, DT (1959) The embryology of the polychaete Scoloplos armiger. QJ Microsc Sci 100: pp. 89-166
    58. Thamm, K, Seaver, EC (2008) Notch signaling during larval and juvenile development in the polychaete annelid Capitella sp. I. Dev Biol 320: pp. 304-18 CrossRef
    59. Sugio, M, Takeuchi, K, Kutsuna, J, Tadokoro, R, Takahashi, Y, Yoshida-Noro, C (2008) Exploration of embryonic origins of germline stem cells and neoblasts in Enchytraeus japonensis (Oligochaeta, Annelida). Gene Expr Patterns 8: pp. 227-36 CrossRef
    60. Ackermann, C, Dorresteijn, A, Fischer, A (2005) Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J Morphol 266: pp. 258-80 CrossRef
    61. Steinmetz, PRH, Kostyuchenko, RP, Fischer, A, Arendt, D (2011) The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii. Evol Dev 13: pp. 72-9 CrossRef
    62. Sedgwick, A (1884) On the Origin of Metameric Segmentation and some other Morphological Questions. Quart J micr Sci 24: pp. 43-82
    63. Remane, A (1950) Die Entstehung der Metamerie der Wirbellosen. Zool Anz Suppl 14: pp. 16-23
    64. Remane, A The enterocoelic origin of the coelom. In: Dougherty, EC eds. (1963) Low Metazoa. University of California Press, Berkeley, CA, pp. 78-90
    65. Jagersten, G (1955) On the early phylogeny of the Metazoa. The Bilaterogastraea-theory. Zool Bidr Uppsala 30: pp. 321-54
    66. Koch, M, Quast, B, Bartolomaeus, T (2014) 2014. Deep Metazoan Phylogeny Backbone Tree Life New insights from Anal Mol Morphol theory data Anal. pp. 173-284
    67. Tzetlin, AB (1987) Structural peculiarities of Pisionides tchesunovi (Polychaeta) and their possible significance. [In Russian]. Zool Z 66: pp. 1454-62
    68. Berking, S (2007) Generation of bilateral symmetry in Anthozoa: a model. J Theor Biol 246: pp. 477-90 CrossRef
    69. Dewel, RA (2000) Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243: pp. 35-74 CrossRef
    70. Perrier, E (1881) Les Colonies Animales et La Formation Des Organismes. G. Masson, Paris
    71. Hatschek, B (1878) Studien 眉ber Entwicklungsgeschichte der Anneliden: Ein Beitrag zur Morphologie der Bilaterien. Arb Zool Inst Wien 1: pp. 277-404
    72. Lacalli, TC (1999) Tunicate tails, stolons, and the origin of the vertebrate trunk. Biol Rev Camb Philos Soc 74: pp. 177-98 CrossRef
    73. Seaver, EC, Kaneshige, LM (2006) Expression of 鈥渟egmentation鈥?genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol 289: pp. 179-94 CrossRef
    74. Copf, T, Rabet, N, Celniker, SE, Averof, M (2003) Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130: pp. 5915-27 CrossRef
    75. Mayer, G (2006) Origin and differentiation of nephridia in the Onychophora provide no support for the Articulata. Zoomorphology 125: pp. 1-12 CrossRef
    76. Blumer, MJF, Gahleitner, P, Narzt, T, Handl, C, Ruthensteiner, B (2002) Ribbons of semithin sections: an advanced method with a new type of diamond knife. J Neurosci Methods 120: pp. 11-6 CrossRef
    77. D鈥橝mico, F (2009) A polychromatic staining method for epoxy embedded tissue: a new combination of methylene blue and basic fuchsine for light microscopy. Biotech Histochem 80: pp. 207-10 CrossRef
    78. imodtkalign http://www.evolution.uni-bonn.de/team/dr.-bjoern-quast/software
    79. Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: pp. 676-82 CrossRef
    80. Platynereis resources http://4dx.embl.de/platy/
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background Segmented body organizations are widely represented in the animal kingdom. Whether the last common bilaterian ancestor was already segmented is intensely debated. Annelids display broad morphological diversity but many species are among the most homonomous metameric animals. The front end (prostomium) and tail piece (pygidium) of annelids are classically described as non-segmental. However, the pygidium structure and development remain poorly studied. Results Using different methods of microscopy, immunolabelling and a number of molecular markers, we describe the neural and mesodermal structures of the pygidium of Platynereis dumerilii. We establish that the pygidium possesses a complicated nervous system with a nerve ring and a pair of sensory ganglia, a complex intrinsic musculature, a large terminal circular blood sinus and an unusual unpaired torus-shaped coelomic cavity. We also describe some earlier steps of pygidial development and pygidial structure of mature animals after epitokous transformation. Conclusions We describe a much more complex organization of the pygidium of P. dumerilii than previously suggested. Many of the characteristics are strikingly similar to those found in the trunk segments, opening the debate on whether the pygidium and trunk segments derive from the same ancestral metameric unit. We analyze these scenarios in the context of two classical theories on the origin of segmentation: the cyclomeric/archicoelomate concept and the colonial theory. Both theories provide possible explanations for the partial or complete homology of trunk segments and pygidium.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700