用户名: 密码: 验证码:
Screening of non-Ionic Surfactant for Enhancing Biobutanol Production
详细信息    查看全文
  • 作者:Pradip B. Dhamole ; Ravindra G. Mane ; Hao Feng
  • 关键词:Butanol ; Extractive fermentation ; Surfactant ; Product inhibition
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:177
  • 期:6
  • 页码:1272-1281
  • 全文大小:434 KB
  • 参考文献:1.Awang, G. M., Jones, G. A., & Ingledew, W. M. (1988). The acetone-butanol-ethanol fermentation. Critical Reviews in Microbiology, 15, S33–S67.CrossRef
    2.Abdehagh, N., Tezel, F. H., & Thibault, J. (2014). Separation techniques in butanol production: challenges and developments. Biomass and Bioenergy, 60, 222-46.CrossRef
    3.Huang, H-J., Ramaswamy, S. & Liu, Y., (2014). Separation and purification of biobutanol during bioconversion of biomass. Separation and Purification Technology, 132, 513-40.CrossRef
    4.Nielsen, D. R., & Prather, K. J. (2009). In situ product recovery of n-butanol using polymeric resins. Biotechnology & Bioengineering, 102, 811-21.CrossRef
    5.Qureshi, N., Hughes, S., Maddox, I. S., & Cotta, M. A. (2005). Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess and Biosystems Engineering, 27, 215-22.CrossRef
    6.Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2007). Bioproduction of butanol from biomass: from genes to bioreactors. Current Opinion in Biotechnology, 18, 220-27.CrossRef
    7.Qureshi, N., & Maddox, I. S. (2005). Reduction in butanol inhibition by perstraction: utilization of concentrated lactose/whey permeate by Clostridium acetobutylicum to enhance butanol fermentation economics. Food Bioproducts and Processing, 83, 43-2.CrossRef
    8.Adhami, L., Griggs, B., Himebrook, P., & Taconi, K. (2009). Liquid–liquid extraction of butanol from dilute aqueous solutions using soybean-derived biodiesel. Journal of the American Oil Chemists, 86, 1123-128.CrossRef
    9.Taconi, K., Venkataramanan, K., & Johnson, D. (2009). Growth and solvent production by Clostridium pasteurianum ATCC? 6013?/sup> utilizing biodiesel-derived crude glycerol as the sole carbon source. Environmental Progress and Sustainable Energy, 28, 100-10.CrossRef
    10.Xue, C., Zhao, J-B., Chen, L-J., Bai, F-W, Yang, S-T. & Sun, J-X. (2014). Integrated butanol recovery for an advanced biofuel: current state and prospects. Applied Microbiology and Biotechnology, 98, 3463-474.CrossRef
    11.Qureshi, N., Saha, B. C., Dien, B., Hector, R. E., & Cotta, M. A. (2010). Production of butanol (a biofuel) from agricultural residues: part I - use of barley straw hydrolysate. Biomass and Bioenergy, 34, 559-65.CrossRef
    12.Dhamole, P. B., Wang, Z., Liu, Y., Wang, B., & Feng, H. (2012). Extractive fermentation with non-ionic surfactants to enhance butanol production. Biomass and Bioenergy, 40, 112-19.CrossRef
    13.Wang, Z., & Dai, Z. (2010). Extractive microbial fermentation in cloud point system. Enzyme and Microbial Technology, 46, 407-18.CrossRef
    14.Wang, Z., Xu, J. H., & Chen, D. (2008). Whole cell microbial transformation in cloud point system. Journal of Industrial Microbiology and Biotechnology, 35, 645-56.CrossRef
    15.Wang, Z., Zhao, F., Hao, X., Chen, D., & Li, D. (2004). Microbial transformation of hydrophobic compound in cloud point system. Journal of Molecular Catalysis B: Enzymatic, 27, 147-53.CrossRef
    16.Dhamole, P. B., Wang, B., & Feng, H. (2013). Detoxification of corn stover hydrolysate using surfactant based aqueous two phase system. Journal of Chemical Technology and Biotechnology, 88, 1744-749.CrossRef
    17.Dhamole, P. B., Demanna, D., & Desai, S. A. (2014). Extraction of p-coumaric acid and ferulic acid using surfactant based aqueous two phase system. Applied Biochemistry and Biotechnology, 174, 564-73.CrossRef
    18.Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Journal of Analytical Chemistry, 31, 426-29.CrossRef
  • 作者单位:Pradip B. Dhamole (1) (2)
    Ravindra G. Mane (2)
    Hao Feng (3)

    1. Chemical Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, MS, India
    2. Birla Institute of Technology & Science, Pilani-Hyderabad Campus, R.R. District, Hyderabad, Telangana, India
    3. Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
This work deals with finding a suitable non-ionic surfactant which has high butanol capturing capacity and can be separated at a temperature close to room temperature and does not extract any intermediates or substrate (i.e., glucose). Importantly, it should be biocompatible, and its separation from the aqueous phase is not affected by other fermentation products. Hence, a pool of non-ionic Pluronic surfactants (L31, L61, L62D, L62LF, L62, L81, L92, L101, L121, L64, P65, P84, P104, P105) were selected for the study. Screening of the surfactant was done based on its hydrophile-lipophile balance (HLB) value, butanol capturing capacity (BCC), and cloud point temperature. Among the various surfactant investigated, L62D captured maximum amount of butanol (0.68 g/g of surfactant). Also, the cloud point temperature of L62D is close to room temperature (28.7 °C). Biocompatibility studies were carried out by conducting fermentation in presence of 3 % L62D which resulted in 148 % increase in butanol production as compared to control (without surfactant). Further, the fermentation products did not have strong influence on phase separation. Keywords Butanol Extractive fermentation Surfactant Product inhibition

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700