用户名: 密码: 验证码:
Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming
详细信息    查看全文
  • 作者:Yottha Srithep (1)
    Lih-Sheng Turng (1) turng@engr.wisc.edu
    Ronald Sabo (2)
    Craig Clemons (2)
  • 关键词:Nanofibrillated cellulose (NFC) &#8211 ; Polyvinyl alcohol (PVOH) &#8211 ; Nanocomposites &#8211 ; Foaming
  • 刊名:Cellulose
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:19
  • 期:4
  • 页码:1209-1223
  • 全文大小:1.1 MB
  • 参考文献:1. Ahola S (2008) Properties and interfacial behaviour of cellulose nanofibrils. Dissertation, Helsinki University of Technology
    2. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresour Technol 99:1664–1671
    3. Allen G, Bowden M, Todd S, Blundell D, Jeffs G, Davies W (1974) Composites formed by interstitial polymerization of vinyl monomers in polyurethane elastomers: 5. Variation of modulus with composition. Polymer 15:28–32
    4. Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677
    5. ASTM D638-10 (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi:10.1520/D0638-10
    6. ASTM D792-08 (2008) Standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International, West Conshohocken, PA
    7. Avella M, Cocca M, Errico M, Gentile G (2011) Biodegradable PVOH-based foams for packaging applications. J Cell Plast 47:271
    8. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook. Wiley, New York
    9. Bulota M, J盲盲skel盲inen A, Paltakari J, Hughes M (2011) Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models. J Mater Sci 46:3387–3398
    10. Chandra A, Gong S, Yuan M, Turng LS, Gramann P, Cordes H (2005) Microstructure and crystallography in microcellular injection molded polyamide 6 nanocomposite and neat resin. Polym Eng Sci 45:52–61
    11. Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798
    12. Davies W (1971a) The elastic constants of a two-phase composite material. J Phys D Appl Phys 4:1176
    13. Davies W (1971b) The theory of composite dielectrics. J Phys D Appl Phys 4:318
    14. Doroudiani S, Chaffey CE, Kortschot MT (2002) Sorption and diffusion of carbon dioxide in wood-fiber/polystyrene composites. J Polym Sci Pol Phys 40:723–735
    15. Dufresne A, Cavaill茅 JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194
    16. Finch CA (1973) Polyvinyl alcohol: properties and applications, vol 339. Wiley, New York
    17. Gong S, Yuan M, Chandra A, Kharbas H, Osorio A, Turng L (2005) Microcellular injection molding. Int Polym Proc 20:202–214
    18. Holland B, Hay J (2001) The thermal degradation of poly (vinyl alcohol). Polymer 42:6775–6783
    19. Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466
    20. Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S, Turng LS (2010) Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Compos Part A Appl S 41:982–990
    21. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747
    22. Kramschuster A, Gong S, Turng LS, Li T (2007) Injection-molded solid and microcellular polylactide and polylactide nanocomposites. J Biobased Mater Bio 1:37–45
    23. Kumar V, Nadella KV (2004) Microcellular foams. In: Eaves D (ed) Handbook of polymer foams. Smithers Rapra Press, Shropshire, pp 243–268
    24. Labuschagne PW, Germishuizen WA, Verryn SMC, Moolman FS (2008) Improved oxygen barrier performance of poly (vinyl alcohol) films through hydrogen bond complex with poly (methyl vinyl ether-co-maleic acid). Eur Polym J 44:2146–2152
    25. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363
    26. Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A Mater 88:391–395
    27. Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A 39:738–746
    28. Marten FL (2002) Vinyl alcohol polymers. Kirk-Othmer Encycl Chem Technol. doi:10.1002/0471238961.2209142513011820
    29. Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074
    30. Matuana LM, Park CB, Balatinecz JJ (1998) Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites. Polym Eng Sci 38:1862–1872
    31. Naguib HE, Park CB, Panzer U, Reichelt N (2002) Strategies for achieving ultra low density polypropylene foams. Polym Eng Sci 42:1481–1492
    32. Nakagaito A, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phy A Mater 78:547–552
    33. Osswald TA (2006) International plastics handbook: the resource for plastics engineers. Hanser, Verlag
    34. Piringer OG, Baner AL (2000) Plastic packaging materials for food: barrier function, mass transport, quality assurance, and legislation. Wiley-Vch, Weinheim
    35. Poling BE, Thomson GH, Friend DG, Rowley RL, Wilding WV (2008) Perry’s chemical engineer’s handbook. McGraw-Hill, New York
    36. Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45:4437–4443
    37. Rachtanapun P, Selke S, Matuana L (2003) Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. J Appl Polym Sci 88:2842–2850
    38. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498
    39. Saito T, Okita Y, Nge T, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65:435–440
    40. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626
    41. Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004
    42. Sharma S (2002) Economics of composites and reinforcements. Composite materials, 1st edn. Narosa Publishing House, New Delhi, pp 20–25
    43. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765
    44. Sir贸 I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494
    45. Stern S, Shah V, Hardy B (1987) Structure-permeability relationships in silicone polymers. J Polym Sci Pol Phys 25:1263–1298
    46. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85
    47. Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16
    48. Yuan M, Winardi A, Gong S, Turng LS (2005) Effects of nano and micro fillers and processing parameters on injection molded microcellular composites. Polym Eng Sci 45:773–788
    49. Zhu B, Zha W, Yang J, Zhang C, Lee LJ (2010) Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent. Polymer 51:2177–2184
  • 作者单位:1. University of Wisconsin鈥揗adison, Madison, WI, USA2. U.S. Forest Service, Forest Products Laboratory, Madison, WI, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties—such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)—were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission electron microscopy (TEM) images, as well as the optical transparency of the films, revealed that the NFC fibers dispersed well in the resulting PVOH/NFC nanocomposites. Adding NFC increased the tensile modulus of the PVOH/NFC nanocomposites nearly threefold. Differential scanning calorimetry (DSC) analysis showed that the NFC served as a nucleating agent, promoting the early onset of crystallization. However, high NFC content also led to greater thermal degradation of the PVOH matrix. PVOH/NFC nanocomposites were sensitive to moisture content and dynamic mechanical analysis (DMA) tests showed that, at room temperature, the storage modulus increased with decreasing moisture content. The solubility of CO2 in the PVOH/NFC nanocomposites depended on their moisture content and decreased with the addition of NFC. Moreover, the desorption diffusivity increased as more NFC was added. Finally, the foaming behavior of the PVOH/NFC nanocomposites was studied using CO2 and/or water as the physical foaming agent(s) in a batch foaming process. Only samples with a high moisture content were able to foam with CO2. Furthermore, the PVOH/NFC nanocomposites exhibited finer and more anisotropic cell morphologies than the neat PVOH films. In the absence of moisture, no foaming was observed in the CO2-saturated neat PVOH or PVOH/NFC nanocomposite samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700