用户名: 密码: 验证码:
Theoretical study of propene oxidation on Bi2O3 surfaces
详细信息    查看全文
  • 作者:Yan-Hua Lei (1)
    Zhao-Xu Chen (1)

    1. Key Laboratory of Mesoscopic Chemistry
    ; Ministry of Education ; Institute of Theoretical and Computational Chemistry ; School of Chemistry and Chemical Engineering ; Nanjing University ; Nanjing ; 210093 ; China
  • 关键词:hydrogen abstraction ; oxidation ; propene ; Bi2O3 surfaces ; reaction mechanism ; density functional theory
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:4
  • 页码:593-600
  • 全文大小:1,440 KB
  • 参考文献:1. Wang, L, Peng, B, Peng, LM, Guo, XF, Xie, ZK, Ding, WP (2013) Mesostructural Bi-Mo-O catalyst: correct structure leading to high performance. Sci Rep 3: pp. 2881
    2. Ayame, A, Uchida, K, Iwataya, M, Miyamoto, M (2002) X-ray photoelectron spectroscopic study on 伪- and 纬-bismuth molybdate surfaces exposed to hydrogen, propene and oxygen. Appl Catal A 227: pp. 7-17 CrossRef
    3. Burrington, JD, Kartisek, CT, Grasselli, RK (1980) Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts: II. Allyl alcohol as a probe for the allylic intermediate. J Catal 63: pp. 235-254 CrossRef
    4. Adams, CR, Jennings, TJ (1964) Mechanism studies of the catalytic oxidation of propylene. J Catal 3: pp. 549-558 CrossRef
    5. Snyder, TP, Hill, CG (1989) The mechanism for the partial oxidation of propylene over bismuth molybdate catalysts. Catal Rev-Sci Eng 31: pp. 43-95 CrossRef
    6. Burrington, JD, Grasselli, RK (1979) Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts. J Catal 59: pp. 79-99 CrossRef
    7. Br眉ckman, K, Grabowski, R, Haber, J, Mazurkiewicz, A, Sloczynski, J, Wiltowski, T (1987) The role of different MoO3 crystal faces in elementary steps of propene oxidation. J Catal 104: pp. 71-79 CrossRef
    8. Grzybowska, B, Haber, J, Janas, J (1977) Interaction of allyl iodide with molybdate catalysts for the selective oxidation of hydrocarbons. J Catal 49: pp. 150-163 CrossRef
    9. Swift, HE, Bozik, JE, Ondrey, JA (1971) Dehydrodimerization of propylene using bismuth oxide as the oxidant. J Catal 21: pp. 212-224 CrossRef
    10. Massoth, FE, Scarpiello, DA (1971) Kinetics of bismuth oxide reduction with propylene. J Catal 21: pp. 225-238 CrossRef
    11. Martir, W, Lunsford, JH (1981) The formation of gas-phase 蟺-allyl radicals from propylene over bismuth oxide and 纬-bismuth molybdate catalysts. J Am Chem Soc 103: pp. 3728-3732 CrossRef
    12. Drlscol, DJ, Lunsford, JH (1983) Kinetic isotope effect in the partial oxidatlon of propylene over Bi2O3. J Phys Chem 87: pp. 301-303 CrossRef
    13. Ueda, W, Asakawa, K, Chen, CL, Moro-Oka, Y, Ikawa, T (1986) Catalytic properties of tricomponent metal oxides having the scheelite structure: I. Role of bulk diffusion of lattice oxide ions in the oxidation of propylene. J Catal 101: pp. 360-368 CrossRef
    14. Adams, CR, Voge, HH, Morgan, CZ, Armstrong, WE (1964) Oxidation of butylenes and propylene over bismuth molybdate. J Catal 3: pp. 379-386 CrossRef
    15. Peacock, JM, Parker, AJ, Ashmore, PG, Hockey, JA (1969) The oxidation of propene over bismuth oxide, molybdenum oxide, and bismuth molybdate catalysts: IV. The selective oxidation of propene. J Catal 15: pp. 398-406 CrossRef
    16. Mehandru, SP, Anderson, AB, Brazdil, JF (1987) CH bond activation and radical-surface reactions for propylene and methane over 伪-Bi2O3. J Chem Soc, Faraday Trans 83: pp. 463-475 CrossRef
    17. Jang, YH, Goddard, WA (2001) Selective oxidation and ammoxidation of propene on bismuth molybdates, ab initio calculations. Top Catal 15: pp. 273-289 CrossRef
    18. Jang, YH, Goddard, WA (2002) Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters. J Phys Chem B 106: pp. 5997-6013 CrossRef
    19. Pudar, S, Oxgaard, J, Chenoweth, K, Duin, ACT, Goddard, WA (2007) Mechanism of selective oxidation of propene to acrolein on bismuth molybdates from quantum mechanical calculations. J Phys Chem C 111: pp. 16405-16415 CrossRef
    20. Getsoian, AB, Shapovalov, V, Bell, AT (2013) DFT+U investigation of propene oxidation over bismuth molybdate: active sites, reaction intermediates, and the role of bismuth. J Phys Chem C 117: pp. 7123-7137 CrossRef
    21. Kresse, G, Hafner, J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47: pp. 558-561 CrossRef
    22. Perdew, JP, Burke, K, Ernzerhof, M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77: pp. 3865-3868 CrossRef
    23. Bl枚chl, PE (1994) Projector augmented-wave method. Phys Rev B 50: pp. 17953-17979 CrossRef
    24. Malmros, G (1970) The crystal structure of alpha-Bi2O3. Acta Chem Scand 24: pp. 384-396 CrossRef
    25. Monkhorst, HJ, Pack, JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13: pp. 5188-5192 CrossRef
    26. Lei, YH, Chen, ZX (2013) Density functional study of the stability of various 伪-Bi2O3 surfaces. J Chem Phys 138: pp. 054703 CrossRef
    27. Davad, RL (2007) CRC Handbook of Chemistry and Physics.. Taylor & Francies Group, Boca Raton
    28. Haber, J, Witko, M (2003) Oxidation catalysis-electronic theory revisited. J Catal 216: pp. 416-424 CrossRef
    29. Fu, G, Xu, X, Lu, X, Wan, HL (2005) Mechanisms of methane activation and transformation on molybdenum oxide based catalysts. J Am Chem Soc 127: pp. 3989-3996 CrossRef
    30. Perdew, JP, Ruzsinszky, A, Csonka, GI, Vydrov, OA, Scuseria, GE, Constantin, LA, Zhou, X, Burke, K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100: pp. 136406 CrossRef
    31. Grimme, S, Antony, J, Ehrlich, S, Krieg, H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132: pp. 154104 CrossRef
    32. Br酶nsted, JN (1928) Acid and basic catalysis. Chem Rev 5: pp. 231-335 CrossRef
    33. Evans, MG, Polanyi, M (1938) Inertia and driving force of chemical reactions. Trans Faraday Soc 34: pp. 11-24 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
The role of bismuth in the selective oxidation of propene has long been debated. We performed density functional calculations to study the dehydrogenation reaction of propene on Bi2O3 surfaces. Our calculated thermodynamic data reveal that the first dehydrogenation of propene on the most stable (010) surface and the (100) surface are difficult. Our calculations indicate that the barrier of the first hydrogen abstraction on the high Miller index surface (211) is much lower than those on the (100) and (010) surfaces, and is close to the experimental one. Further dehydrogenation is shown to be difficult and production of 1,5-hexadiene through dimerization of allyl is likely, in agreement with the experimental observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700