用户名: 密码: 验证码:
Ion-Beam-Directed Self-Ordering of Ga Nanodroplets on GaAs Surfaces
详细信息    查看全文
  • 作者:Xingliang Xu ; Jiang Wu ; Xiaodong Wang ; Mingliang Zhang…
  • 关键词:Focused ion beam ; Nanofabrication ; Self ; assembly ; Droplet epitaxy
  • 刊名:Nanoscale Research Letters
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 全文大小:708 KB
  • 参考文献:1.Lee JH, Wang ZM, Strom NW, Mazur YI, Salamo GJ (2006) InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Appl Phys Lett 20:202101.CrossRef
    2.Yakes MK, Cress CD, Tischler JG, Bracker AS (2010) Three-dimensional control of self-assembled quantum dot configurations. ACS Nano 4:3877-3882.CrossRef
    3.Creasey M, Lee J, Wang Z, Salamo G, Li X (2012) Self-Assembled InGaAs Quantum Dot Clusters with Controlled Spatial and Spectral Properties. Nano Lett 12:5169-5174.CrossRef
    4.Liang B, Wang Z, Wang X, Lee J, Mazur YI, Shih C, Salamo GJ (2008) Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy. ACS Nano 11:2219-2224.CrossRef
    5.Mano T, Kuroda T, Sanguinetti S, Ochiai T, Tateno T, Kim J, Noda T, Kawabe M, Sakoda K, Kido G, Koguchi N (2005) Self-assembly of concentric quantum double rings. Nano Lett 5:425-428.CrossRef
    6.Somaschini C, Bietti S, Koguchi N, Sanguinetti S (2009) Fabrication of Multiple Concentric Nanoring Structures. Nano Lett 10:3419-3424CrossRef
    7.Lee JH, Wang ZM, Ware ME, Wijesundara KC, Garrido M, Stinaff EA, Salamo GJ (2008) Super low density InGaAs semiconductor ring-shaped nanostructures. Cryst Growth Des 8:1945-1951.CrossRef
    8.Wu J, Hirono Y, Li X, Wang ZM, Lee J, Benamara M, Luo S, Mazur YI, Kim ES, Salamo GJ (2014) Self-Assembly of Multiple Stacked Nanorings by Vertically Correlated Droplet Epitaxy. Adv Funct Mater 24:530-535.CrossRef
    9.Li AZ, Wang ZM, Wu J, Salamo GJ (2010) Holed nanostructures formed by aluminum droplets on a GaAs substrate. Nano Res 3:490-495.CrossRef
    10.Li AZ, Wang ZM, Wu J, Xie Y, Sablon KA, Salamo GJ (2009) Evolution of Holed Nanostructures on GaAs (001). Cryst Growth Des 9:2941-2943.CrossRef
    11.Wang ZM, Holmes K, Shultz JL, Salamo GJ (2005) Self-assembly of GaAs holed nanostructures by droplet epitaxy. Physica status solidi (a) 8:R85-R87.
    12.Li X, Wu J, Wang ZM, Liang B, Lee J, Kim E, Salamo GJ (2014) Origin of nanohole formation by etching based on droplet epitaxy. Nanoscale 6:2675-2681.CrossRef
    13.Mano T, Kuroda T, Yamagiwa M, Kido G, Sakoda K, Koguchi N (2006) Lasing in GaAs/AlGaAs self-assembled quantum dots. Appl Phys Lett 18:183102-3.
    14.Mano T, Kuroda T, Mitsuishi K, Nakayama Y, Noda T, Sakoda K (2008)GaAs∕AlGaAs quantum dot laser fabricated on GaAs (311) A substrate by droplet epitaxy. Appl Phys Lett 20:203110-3.
    15.Wu J, Shao D, Dorogan VG, Li AZ, Li S, Decuir EA, Manasreh MO, Wang ZM, Mazur YI, Salamo GJ (2010) Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy. Nano Lett 10:1512-6.
    16.Wu J, Li Z, Shao D, Manasreh MO, Kunets VP, Wang ZM, Salamo GJ, Weaver BD (2009) Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy. Appl Phys Lett 94:171102-3.
    17.Stock E, Warming T, Ostapenko I, Rodt S, Schliwa A, Tofflinger JA, Lochmann A, Toropov AI, Moshchenko SA, Dmitriev DV (2010) Single-photon emission from InGaAs quantum dots grown on (111) GaAs. Appl Phys Lett 9:093112-3.
    18.Wu J, Wang ZM, Dorogan VG, Li S, Zhou Z, Li H, Lee J, Kim ES, Mazur YI, Salamo GJ (2012) Strain-free ring-shaped nanostructures by droplet epitaxy for photovoltaic application. Appl Phys Lett 101:043904-4.
    19.Wu J, Wang ZM (2014) Droplet epitaxy for advanced optoelectronic materials and devices. J Phys D 47:173001.CrossRef
    20.Ran G, Zhang J, Wei Q, Xi S, Zu X, Wang L (2009) The effects of carbon coating on nanoripples induced by focused ion beam. Appl Phys Lett 7:073103-3.
    21.Zhang J, Wei Q, Lian J, Jiang W, Weber WJ, Ewing RC (2008) Self-assembly of well-aligned 3C-SiC ripples by focused ion beam. Appl Phys Lett 19:193107-3
    22.Avdic A, Lugstein A, Schondorfer C, Bertagnolli E (2009) Focused ion beam generated antimony nanowires for microscale pH sensors. Appl Phys Lett 22:223106-3.
    23.Wei Q, Zhou X, Joshi B, Chen Y, Li KD, Wei Q, Sun K, Wang L (2009) Self-Assembly of Ordered Semiconductor Nanoholes by Ion Beam Sputtering. Adv Mater 28:2865-2869.CrossRef
    24.Rose F, Fujita H, Kawakatsu H (2008) Real-time observation of FIB-created dots and ripples on GaAs. Nanotechnology 19:874-880.CrossRef
    25.Du Y, Atha S, Hull R, Groves J, Lyubinetsky I, Baer D (2004) Focused-ion-beam directed self-assembly of Cu2O islands on SrTiO3(100). Appl Phys Lett 84:5213-5215.
    26.Rusponi S, Costantini G, Boragno C, Valbusa U (1998) Scaling Laws of the Ripple Morphology on Cu(110). Phys Rev Lett 19:4184-4187.CrossRef
    27.Rusponi S, Boragno C, Valbusa U (1997)Ripple Structure on Ag(110) Surface Induced by Ion Sputtering. Phys Rev Lett 14:2795-2798.CrossRef
    28.Lian J, Wang L, Sun X, Yu Q, Ewing RC (2006) Patterning Metallic Nanostructures by Ion-Beam-Induced Dewetting and Rayleigh Instability. Nano Lett 5:1047-1052.CrossRef
    29.Chason E, Mayer T, Kellerman B, McIlroy D, Howard A (1994) Roughening instability and evolution of the Ge(001) surface during ion sputtering. Phys Rev Lett 19:3040-3043.CrossRef
    30.Ziberi B, Frost F, Höche T, Rauschenbach B (2005) Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: experiment and theory. Phys Rev B 23:235310.CrossRef
    31.Lian J, Zhou W, Wei Q, Wang L, Boatner LA, Ewing RC (2006) Simultaneous formation of surface ripples and metallic nanodots induced by phase decomposition and focused ion beam patterning. Appl Phys Lett 9:093112(1-3).
    32.Wu J, Chen G, Zeng Z, Li S, Xu X, Wang ZM, Salamo GJ (2012) Ordered SrTiO3 Nanoripples Induced by Focused Ion Beam. Nano-Micro Lett 4:243-246.CrossRef
    33.Chalapat K, Chekurov N, Jiang H, Li J, Parviz B, Paraoanu G (2013) Self-organized origami structures via ion-induced plastic strain. Adv Mater 25:91-95.CrossRef
    34.Wu JH, Ye W, Cardozo BL, Saltzman D, Sun K, Sun H, Mansfield JF, Goldman RS (2009) Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces. Appl Phys Lett 15:153107.CrossRef
    35.Wei Q, Lian J, Lu W, Wang L (2008) Highly Ordered Ga Nanodroplets on a GaAs Surface Formed by a Focused Ion Beam. Phys Rev Lett 7:076103.CrossRef
    36.Koguchi N, Ishige K (1993) Growth of GaAs Epitaxial Microcrystals on an S-Terminated GaAs Substrate by Successive Irradiation of Ga and As Molecular Beams. Jpn J Appl Phys 32:2052-2058.CrossRef
    37.Tersoff J, Teichert C, Lagally MG (1996) Self-Organization in Growth of Quantum Dot Superlattices. Phys Rev Lett 10:1675-1678.CrossRef
    38.Lugstein A, Basnar B, Bertagnolli E (2004) Size and site controlled Ga nanodots on GaAs seeded by focused ion beams. J Vac Sci Technol B 3:888-892.
    39.Menzel R, Gärtner K, Wesch W, Hobert H (2000) Damage production in semiconductor materials by a focused Ga+ ion beam. J Appl Phys 10:5658-5661.CrossRef
    40.Xu X, Wu J, Wang X, Li H, Zhou Z, Wang ZM (2014) Site-controlled fabrication of Ga nanodroplets by focused ion beam. Appl Phys Lett 104:133104-4.
    41.Kang M, Wu J, Sofferman D, Beskin I, Chen H, Thornton K, Goldman R (2013) Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces. Appl Phys Lett 7:072115-3.
    42.Tersoff J, Jesson DE, Tang WX (2009) Running droplets of gallium from evaporation of gallium arsenide. Science 5924:236.CrossRef
    43.Wu J, Wang ZM, Li AZ, Benamara M, Li S, Salamo GJ (2011) Nanoscale footprints of self-running gallium droplets on GaAs surface. PLoS One 6:e20765.CrossRef
  • 作者单位:Xingliang Xu (1) (2) (3) (4)
    Jiang Wu (1) (5)
    Xiaodong Wang (4)
    Mingliang Zhang (4)
    Juntao Li (2) (3)
    Zhigui Shi (2) (3)
    Handong Li (1)
    Zhihua Zhou (1)
    Haining Ji (1)
    Xiaobin Niu (1)
    Zhiming M. Wang (1) (4)

    1. Institute of Fundamental and Frontier Science, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People’s Republic of China
    2. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, 621999, People’s Republic of China
    3. Research Center for Microsystems and Terahertz, China Academy of Engineering Physics, Mianyang, 621999, People’s Republic of China
    4. Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Science, Beijing, 100083, People’s Republic of China
    5. Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
Ordered nanodroplet arrays and aligned nanodroplet chains are fabricated using ion-beam-directed self-organization. The morphological evolution of nanodroplets formed on GaAs (100) substrates under ion beam bombardment is characterized by scanning electron microscopy and atomic force microscopy. Ordered Ga nanodroplets are self-assembled under ion beam bombardment at off-normal incidence angles. The uniformity, size, and density of Ga nanodroplets can be tuned by the incident angles of ion beam. The ion beam current also plays a critical role in the self-ordering of Ga nanodroplets, and it is found that the droplets exhibit a similar droplet size but higher density and better uniformity with increasing the ion beam current. In addition, more complex arrangements of nanodroplets are achieved via in situ patterning and ion-beam-directed migration of Ga atoms. Particularly, compared to the destructive formation of nanodroplets through direct ion beam bombardment, the controllable assembly of nanodroplets on intact surfaces can be used as templates for fabrication of ordered semiconductor nanostructures by droplet epitaxy. Keywords Focused ion beam Nanofabrication Self-assembly Droplet epitaxy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700