用户名: 密码: 验证码:
A chemiluminescence resonance energy transfer system composed of cobalt(II), luminol, hydrogen peroxide and CdTe quantum dots for highly sensitive determination of hydroquinone
详细信息    查看全文
  • 作者:Shuxia Xu ; Jialin Li ; Xianming Li ; Min Su ; Zeming Shi ; Ying Zeng…
  • 关键词:Nonenzymatic assay ; Catalytic oxidation ; Surface modification ; Water analysis ; Transmission electron microscopy ; Interference ; Standard addition
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:183
  • 期:2
  • 页码:667-673
  • 全文大小:1,043 KB
  • 参考文献:1.Qin GX, Zhao SL, Huang Y, Jiang J, Liu YM (2013) Sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Biosens Bioelectron 46:119–123. doi:10.​1016/​j.​bios.​2013.​02.​011 CrossRef
    2.Huang XY, Ren JC (2012) Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. Trac-Trends Anal Chem 40:77–89. doi:10.​1016/​j.​trac.​2012.​07.​014 CrossRef
    3.Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. Microchim Acta 181:671–677. doi:10.​1007/​s00604-014-1172-2 CrossRef
    4.Han SQ, Wang JB, Jia SZ (2014) Determination of formaldehyde based on the enhancement of the chemiluminescence produced by CdTe quantum dots and hydrogen peroxide. Microchim Acta 181:147–153. doi:10.​1007/​s00604-013-1083-7 CrossRef
    5.Chen L, Han HY (2014) Recent advances in the use of near-infrared quantum dots as optical probes for bioanalytical, imaging and solar cell application. Microchim Acta 181: 1485–1495. doi:10.​1007/​s00604-014-1204-y
    6.Liu F, Deng WP, Zhang Y, Ge SG, Yu JH, Yan M (2014) Highly sensitive hybridization assay using the electrochemiluminescence of an ITO electrode, CdTe quantum dots functionalized with hierarchical nanoporous PtFe nanoparticles, and magnetic graphene nanosheets. Microchim Acta 181:213–222. doi:10.​1007/​s00604-013-1102-8 CrossRef
    7.Huang XY, Li L, Qian HF, Dong CQ, Ren JC (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143. doi:10.​1002/​ange.​200601196 CrossRef
    8.Li Z, W YX, Zhang GX, Xu WB, Han YJ (2010) Chemiluminescence resonance energy transfer in the luminol-CdTe quantum dots conjugates. J Lumin 130: 995–999. doi:10.​1016/​j.​jlumin.​2010.​01.​013
    9.Zhou ZM, Yu Y, Zhao YD (2012) A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst 137:4262–4266. doi:10.​1039/​C2AN35520E CrossRef
    10.Liu XQ, Freeman R, Golu E, Willner I (2011) Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano 5:7648–7655. doi:10.​1021/​nn202799d CrossRef
    11.Wang HQ, Li YQ, Wang JH, Xu Q, Li XQ, Zhao YD (2008) Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer. Anal Chim Acta 610:68–73. doi:10.​1016/​j.​aca.​2008.​01.​018 CrossRef
    12.Golub E, Niazov A, Freeman R, Zatsepin M, Willner I (2012) Photoelectrochemical biosensors without external irradiation: probing enzyme activities and DNA sensing using hemin/G-quadruplex-stimulated chemiluminescence resonance energy transfer (CRET) generation of photocurrents. J Phys Chem C 116:13827–13834. doi:10.​1021/​jp303741x CrossRef
    13.Dong SC, Liu FL, Lu C (2013) Organo-modified hydrotalcite-quantum dot nanocomposites as a novel chemiluminescence resonance energy transfer probe. Anal Chem 85:3363–3368. doi:10.​1021/​ac400041t CrossRef
    14.Al-Ogaidi I, Gou HL, Aguilar ZP, Guo SW, Melconian AK, Al-kazaz AKA, Meng FK, Wu NQ (2014) Detection of the ovarian cancer biomarker CA-125 using chemiluminescence resonance energy transfer to graphene quantum dots. Chem Commun 50:1344–1346. doi:10.​1039/​C3CC47701K CrossRef
    15.Tu WW, Wang WJ, Lei JP, Deng SY, Ju HX (2012) Chemiluminescence excited photoelectrochemistry using graphene-quantum dots nanocomposite for biosensing. Chem Commun 48:6535–6537. doi:10.​1039/​C2CC32866F CrossRef
    16.Chen H, Lin L, Lin Z, Lu C, Guo G, Lin JM (2011) Flow-injection analysis of hydrogen peroxide based on carbon nanospheres catalyzed hydrogen carbonate-hydrogen peroxide chemiluminescent reaction. Analyst 136:1957–1964. doi:10.​1039/​C0AN00815J CrossRef
    17.Chen H , Lin L, Li HF, Lin JM (2014) Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev 263–264:86–100. doi:10.​1016/​j.​ccr.​2013.​07.​013 CrossRef
    18.Zhao SL, Huang Y, Shi M, Liu RJ, Liu YM (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82:2036–2041. doi:10.​1021/​ac9027643 CrossRef
    19.Kang J, Li XW, Geng JY, Han L, Tang JL, Jin YR, Zhang YH (2012) Determination of hyperin in seed of cuscuta chinensis Lam. By enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe(CN)6 system. Food Chem 134:2383–2388. doi:10.​1016/​j.​foodchem.​2012.​04.​055 CrossRef
    20.Yuan JP, Guo WW, Wang EK (2008) Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal Chem 80:1141–1145. doi:10.​1021/​ac0713048 CrossRef
    21.Li L, Qian HF, Fang NH, Ren JC (2006) Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J Lumin 116:59–66. doi:10.​1016/​j.​jlumin.​2005.​03.​001 CrossRef
    22.Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860. doi:10.​1021/​cm034081k CrossRef
    23.Li SF, Li XZ, Xu J, Wei XW (2008) Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system. Talanta 75:32–37. doi:10.​1016/​j.​talanta.​2007.​10.​001 CrossRef
    24.Li Z, Sun RL, Ni YN, Kokot S (2014) A novel fluorescent probe involving a graphene quantum dot–enzyme hybrid system for the analysis of hydroquinone in the presence of toxic resorcinol and catechol. Anal Methods 6:7420–7425. doi:10.​1039/​C4AY01222D CrossRef
    25.Sirajuddin BMI, Niaz A, Shah A, Rauf A (2007) Ultra-trace level determination of hydroquinone in waste photographic solutions by UV-vis spectrophotometry. Talanta 72:546–553. doi:10.​1016/​j.​talanta.​2006.​11.​021 CrossRef
    26.Afkhami A, Khatami HA (2001) Indirect kinetic-spectrophotometric determination of resorcinol, catechol, and hydroquinone. J Anal Chem 56:429–432. doi:10.​1023/​A:​1016670818466 CrossRef
    27.Li MG, Ni F, Wang YL, Xu SD, Zhang DD, Chen SH, Wang L (2009) Sensitive and facile determination of catechol and hydroquinone simultaneously under coexistence of resorcinol with a Zn/Al layered double hydroxide film modified glassy carbon electrode. Electroanalysis 21:1521–1526. doi:10.​1002/​elan.​200804573 CrossRef
    28.De Oliveira IRWZ, De Barros REHM, Neves A, Vieira IC (2007) Biomimetic sensor based on a novel copper complex for the determination of hydroquinone in cosmetics. Sensors Actuators B 122:89–94. doi:10.​1016/​j.​snb.​2006.​05.​008 CrossRef
    29.Li J, Liu CY, Cheng C (2011) Electrochemical detection of hydroquinone by graphene and Pt-graphene hybrid material synthesized through a microwave-assisted chemical reduction process. Electrochim Acta 56:2712–2716. doi:10.​1016/​j.​electacta.​2010.​12.​046 CrossRef
    30.Hu S, Wang YH, Wang XZ, Xu L, Xiang J, Sun W (2012) Electrochemical detection of hydroquinone with a gold nanoparticle and graphene modified carbon ionic liquid electrode. Sensors Actuators B 168:27–33. doi:10.​1016/​j.​snb.​2011.​12.​108 CrossRef
    31.Zheng LZ, Xiong LY, Li YD, Xu JP, Kang XW, Zou ZJ, Yang SM, Xia J (2013) Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors Actuators B 177:344–349. doi:10.​1016/​j.​snb.​2012.​11.​006 CrossRef
  • 作者单位:Shuxia Xu (1) (2)
    Jialin Li (1)
    Xianming Li (1)
    Min Su (1)
    Zeming Shi (3)
    Ying Zeng (1) (2)
    Shijun Ni (3)

    1. College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
    2. Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu University of Technology, Chengdu, 610059, China
    3. College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
This article describes a nonenzymatic chemiluminescence resonance energy transfer (CRET) system for highly sensitive determination of hydroquinone. It was found that the Co(II)-catalyzed luminescence of luminol in pH 11.5 solution is transferred to CdTe quantum dots (QDs) via a CRET mechanism. Hydroquinone is oxidized by H2O2 to benzoquinone which quenches the fluorescence of the QDs. The enhancement is attributed to the adsorption of Co(II) on the surface of the negatively charged QDs. The CRET system was applied in an assay for hydroquinone that has a detection limit of 0.17 nmol L−1. The detection limit was lower by factors between 100 and 250,000 than earlier reported methods. The assay was successfully applied to the quantitation of hydroquinone in (spiked) water samples, with recoveries ranging from 95 % to 106 %, and relative standard deviations between 0.5 % and 2.4 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700