用户名: 密码: 验证码:
The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties
详细信息    查看全文
  • 作者:Xiaohua Yu (1)
    Zhaolin Zhan (1)

    1. Faculty of Materials Science and Engineering
    ; Kunming University of Science and Technology ; Kunming ; 650093 ; People鈥檚 Republic of China
  • 关键词:Size effects ; Nanocrystalline materials ; Thermodynamic ; Mechanical ; Bond energy
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:807 KB
  • 参考文献:1. Gleite, H (1989) Nanocrystalline materials. Prog Mater Sci 33: pp. 223-315 CrossRef
    2. Edelstein, AS, Murday, JS, Rath, BB (1997) Challenges in nanomaterials design. Prog Mater Sci 42: pp. 5-21 CrossRef
    3. Giebultowicz, T (2000) Nanothermodynamics: breathing life into an old model. Nature 408: pp. 299-301 CrossRef
    4. Tong, WP, Tao, NR, Wang, ZB, Lu, J, Lu, K (2003) Nitriding iron at lower temperatures. Science 299: pp. 686-688 CrossRef
    5. Meyers, MA, Mishra, A, Benson, DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51: pp. 427-556 CrossRef
    6. Sun, CQ, Wang, Y, Tay, BK, Li, S, Huang, H, Zhang, YB (2002) Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom. J Phys Chem B 106: pp. 10701-10705 CrossRef
    7. Delogu, F (2005) Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: molecular dynamics simulations. Phys Rev B 72: pp. 205418 CrossRef
    8. Zhang, Z, Li, JC, Jiang, Q (2000) Size effect on the freezing temperature of lead particles. J Mater Sci Lett 19: pp. 1893-1895 CrossRef
    9. Guisbiers, G, Buchaillot, L (2009) Modeling the melting enthalpy of nanomaterials. J Phys Chem C 113: pp. 3566-3568 CrossRef
    10. Zhu, YF, Lian, JS, Jiang, Q (2009) Modeling of the melting point, Debye temperature, thermal expansion coefficient, and the specific heat of nanostructured materials. J Phys Chem C 113: pp. 16896-16900 CrossRef
    11. Li, YJ, Qi, WH, Huang, BY, Wang, MP, Xiong, SY (2010) Modeling the thermodynamic properties of bimetallic nanosolids. J Phys Chem Solids 71: pp. 810-817 CrossRef
    12. Guisbiers, G, Buchaillot, L (2009) Universal size/shape-dependent law for characteristic temperatures. Phys Lett A 374: pp. 305-308 CrossRef
    13. Guisbiers, G (2010) Size-dependent materials properties towards a universal equation. Nanoscale Res Lett 5: pp. 1132-1136 CrossRef
    14. Guisbiers, G (2012) Review on the analytical models describing melting at the nanoscale. J Nanoscience Lett 2: pp. 8 CrossRef
    15. Ganguli, D (2008) Size effect in melting: a historical overview. T Indian Ceramsoc 67: pp. 49-62
    16. Sadaiyandi, K (2009) Size dependent Debye temperature and mean square displacements of nanocrystalline Au, Ag and Al. Mater Chem Phys 115: pp. 703-706 CrossRef
    17. Jasiukiewicza, C, Karpusb, V (2003) Debye temperature of cubic crystals. Solid State Commun 128: pp. 167-169 CrossRef
    18. Qi, WH, Wang, MP, Xu, GY (2003) The particle size dependence of cohesive energy of metallic nanoparticles. Chem Phys Lett 372: pp. 632-634 CrossRef
    19. Safaei, A (2010) Shape, structural, and energetic effects on the cohesive energy and melting point of nanocrystals. J Phys Chem C 114: pp. 13482-13496 CrossRef
    20. Jiang, Q, Li, JC, Chi, BQ (2002) Size-dependent cohesive energy of nanocrystals. Chem Phys Lett 366: pp. 551-554 CrossRef
    21. Yang, CC, Li, S (2007) Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Phys Rev B 75: pp. 165413 CrossRef
    22. Liu, W, Liu, D, Zheng, WT, Jiang, Q (2008) Size and structural dependence of cohesive energy in Cu. J Phys Chem C 112: pp. 18840-18845 CrossRef
    23. Vanithakumari, SC, Nanda, KK (2008) A universal relation for the cohesive energy of nanoparticles. Phys Lett A 372: pp. 6930-6934 CrossRef
    24. Luo, WH, Deng, L, Su, KL, Li, KM, Liao, GH, Xiao, SF (2011) Gibbs free energy approach to calculate the thermodynamic properties of copper nanocrystals. Phys B 406: pp. 859-863 CrossRef
    25. Yu, XH, Zhan, ZL, Rong, J, Liu, Z, Li, L, Liu, JX (2014) Vacancy formation energy and size effects. Chem Phys Lett 600: pp. 43-45 CrossRef
    26. Hou, M, Azzaoui, ME, Pattyn, H, Verheyden, J, Koops, G, Zhang, G (2000) Growth and lattice dynamics of Co nanoparticles embedded in Ag: a combined molecular-dynamics simulation and M枚ssbauer study. Phys Rev B 62: pp. 5117-5128 CrossRef
    27. Jiang, Q, Ao, ZM, Zheng, WT (2007) Temperature and size effects on the amplitude of atomic vibration of Co nanocrystals embedded in Ag matrix. Chem Phys Lett 439: pp. 102-104 CrossRef
    28. Gleiter, H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48: pp. 1-29 CrossRef
    29. Zhao, YH, Lu, K (1997) Grain-size dependence of thermal properties of nanocrystalline elemental selenium studied by X-ray diffraction. Phys Rev B 56: pp. 14330-14337 CrossRef
    30. Yang, CC, Xiao, MX, Li, W, Jiang, Q (2006) Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Commun 139: pp. 148-152 CrossRef
    31. Rupp, J, Birringer, R (1987) Enhanced specific-heat-capacity (cp) measurements (150鈥?00聽K) of nanometer-sized crystalline materials. Phys Rev B 36: pp. 7888-7890 CrossRef
    32. Hellstern, E, Fecht, HJ, Fu, Z, Johnson, WL (1989) Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. J Appl Phys 65: pp. 305-310 CrossRef
    33. Lucas, M, Mai, W, Yang, R, Wang, ZL, Riedo, E (2007) Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Lett 7: pp. 1314-1317 CrossRef
    34. Kulkarni, AJ, Zhou, M, Ke, FJ (2005) Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16: pp. 2749-2756 CrossRef
    35. Zhang, LX, Huang, HC (2006) Young鈥檚 moduli of ZnO nanoplates: ab initio determinations. Appl Phys Lett 89: pp. 183111 CrossRef
    36. Miller, RE, Shenoy, VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11: pp. 139-147 CrossRef
    37. Safaei, A (2012) Size-dependent mass density of nanocrystals. Nano 71: pp. 250009
    38. Nanda, KK (2012) Size-dependent density of nanoparticles and nanostructured materials. Phys Lett A 376: pp. 3301-3302 CrossRef
    39. Warlimont, M (2005) Springer Handbook of Condensed Matter and Materials Data. Spinger Berlin Heidelberg, New York
    40. Keene, BJ (1993) Review of data for the surface tension of pure metals. Int Mater Views 38: pp. 157-192 CrossRef
    41. Jing, Q, Yang, CC (2008) Size effect on the phase stability of nanostructures. Curr Nanoscience 4: pp. 179-200 CrossRef
    42. Guisbiers, G, Kazan, M, Overschelde, OV, Wautelet, M, Pereira, S (2008) Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C 112: pp. 4097-4103 CrossRef
    43. Sun, CQ, Tay, BK, Zeng, XT, Li, S, Chen, TP, Zhou, J, Bai, HL, Jiang, EY (2002) Bond-order鈥揵ond-length鈥揵ond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J Phys Cond Matter 14: pp. 7781-7795 CrossRef
    44. Streitz, FH, Cammarata, RC, Sieradzki, K (1994) Surface-stress effects on elastic properties. I. Thin metal films. Phys Rev B 49: pp. 10699-10706 CrossRef
    45. Wong, EW, Sheehan, PE, Lieber, CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277: pp. 1971-1975 CrossRef
    46. Xiong, SY, Qi, WH, Cheng, YJ, Huang, BY, Wang, MP, Li, YJ (2011) Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys Chem Chem Phys 13: pp. 10652-10660 CrossRef
    47. Xiao, SF, Hu, WY, Yang, JY (2006) Melting temperature: from nanocrystalline to amorphous. J Chem Phys 125: pp. 184504 CrossRef
    48. Luo, WH, Hu, WY, Xiao, SF (2008) Size Effect on the thermodynamic properties of silver nanoparticles. J Phys Chem C 112: pp. 2359-2369 CrossRef
    49. K盲stle, G, Boyen, HG, Schr枚der, A, Plettl, A, Ziemann, P (2004) Size effect of the resistivity of thin epitaxial gold films. Phys Rev B 70: pp. 165414 CrossRef
    50. Buffat, P, Borel, JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13: pp. 2287-2298 CrossRef
    51. Dick, K, Dhanasekaran, T, Zhang, ZY, Meisel, D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124: pp. 2312-2317 CrossRef
    52. Sambles, JR (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid and the lowering of the melting point of solid gold particles. Proc R Soc London A 324: pp. 339-351 CrossRef
    53. Shibata, T, Bunker, BA, Zhang, ZY, Meisel, D, Vardeman, CF, Gezelter, JD (2002) Size-dependent spontaneous alloying of Au-Ag nanoparticles. J Am Chem Soc 124: pp. 11989-11996 CrossRef
    54. Edalati, K, Horita, Z (2011) Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion. Scr Mater 64: pp. 161-164 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
This work has considered the intrinsic influence of bond energy on the macroscopic, thermodynamic, and mechanical properties of crystalline materials. A general criterion is proposed to evaluate the properties of nanocrystalline materials. The interrelation between the thermodynamic and mechanical properties of nanomaterials is presented and the relationship between the variation of these properties and the size of the nanomaterials is explained. The results of our work agree well with thermodynamics, molecular dynamics simulations, and experimental results. This method is of significance in investigating the size effects of nanomaterials and provides a new approach for studying their thermodynamic and mechanical properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700