用户名: 密码: 验证码:
Nanoscale noble metals with a hollow interior formed through inside-out diffusion of silver in solid-state core-shell nanoparticles
详细信息    查看全文
  • 作者:Pengfei Hou (1) (2)
    Penglei Cui (2)
    Hui Liu (2)
    Jianling Li (1)
    Jun Yang (2)

    1. State Key Laboratory of Advanced Metallurgy
    ; University of Science and Technology of Beijing ; 30 College Road ; Beijing ; 100083 ; China
    2. State Key Laboratory of Multiphase Complex Systems
    ; Institute of Process Engineering ; Chinese Academy of Sciences ; Beijing ; 100190 ; China
  • 关键词:noble metal ; nanoparticle ; inside ; out diffusion ; solid ; state ; core ; shell ; hollow
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:8
  • 期:2
  • 页码:512-522
  • 全文大小:2,553 KB
  • 参考文献:1. Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Ni1鈭?em class="a-plus-plus">x Ptx ( / x = 0鈥?.12) hollow spheres as catalysts for hydrogen generation from ammonia borane. / Inorg. Chem. 2007, / 46, 788鈥?94. CrossRef
    2. Peng, Z. M.; Wu, J. B.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. / Chem. Mater. 2010, / 22, 1098鈥?106. CrossRef
    3. Bai, F.; Sun, Z. C.; Wu, H. M.; Haddad, R. E.; Xiao, X. Y.; Fan, H. Y. Templated photocatalytic synthesis of well-defined platinum hollow nanostructures with enhanced catalytic performance for methanol oxidation. / Nano Lett. 2011, / 11, 3759鈥?762. CrossRef
    4. Liang, H.-P.; Zhang, H.-M.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J.; Bai, C.-L. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. / Angew. Chem. Int. Ed. 2004, / 43, 1540鈥?543. CrossRef
    5. Yang, J.; Lee, J. Y.; Too, H.-P.; Valiyaveettil, S. A bis( / p-sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres. / J. Phys. Chem. B 2006, / 110, 125鈥?29. CrossRef
    6. Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. / J. Am. Chem. Soc. 2013, / 135, 16762鈥?6765. CrossRef
    7. Caruso, F.; Caruso, R. A.; M枚hwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. / Science 1998, / 282, 1111鈥?114. science.282.5391.1111" target="_blank" title="It opens in new window">CrossRef
    8. Caruso, F.; Shi, X.; Caruso, R. A.; Susha, A. Hollow titania spheres from layered precursor deposotion on sacrificial colloidal core particles. / Adv. Mater. 2001, / 13, 740鈥?44. CrossRef
    9. Schmidt, H. T.; Ostafin, A. E. Liposome directed growth of calcium phosphate nanoshells. / Adv. Mater. 2002, / 14, 532鈥?35. CrossRef
    10. Yang, Z. Z.; Niu, Z. W.; Lu, Y. F.; Hu, Z. B.; Han, C. C. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. / Agnew. Chem. Int. Ed. 2003, / 42, 1943鈥?945. CrossRef
    11. Lou, X. W.; Yuan, C. L.; Archer, L. A. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: Cavity size tuning and functionalization. / Small 2007, / 3, 261鈥?65. CrossRef
    12. Peng, B.; Meng, X. W.; Tang, F. X.; Ren, X. L.; Chen, D.; Ren, J. General synthesis and optical properties of monodisperse multifunctional metal-ion-doped TiO2 hollow particles. / J. Phys. Chem. C 2009, / 113, 20240鈥?0245. CrossRef
    13. Wang, Y. Q.; Tang, C. J.; Deng, Q.; Liang, C. H.; Ng, D. H. L.; Kwong, F.-L.; Wang, H. Q.; Cai, W. P.; Zhang, L. D.; Wang, G. Z. A versatile method for controlled synthesis of porous hollow spheres. / Langmuir 2010, / 26, 14830鈥?4834. CrossRef
    14. Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. / J. Am. Chem. Soc. 2011, / 133, 4738鈥?741. CrossRef
    15. Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson鈥檚 principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. / J. Am. Chem. Soc. 2013, / 135, 16082鈥?6091. CrossRef
    16. Chen, H. M.; Liu, R.-S.; Lo, M.-Y.; Chang, S.-C.; Tsai, L.-D.; Peng, Y.-M.; Lee, J.-F. Hollow platinum spheres with nano-channels: Synthesis and enhanced catalysis for oxygen reduction. / J. Phys. Chem. C 2008, / 112, 7522鈥?526. CrossRef
    17. Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. / Acc. Chem. Res. 2008, / 41, 1587鈥?595. CrossRef
    18. Gonz谩lez, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature. / Science 2011, / 334, 1377鈥?380. science.1212822" target="_blank" title="It opens in new window">CrossRef
    19. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, P. A. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. / Science 2004, / 304, 711鈥?14. science.1096566" target="_blank" title="It opens in new window">CrossRef
    20. Zeng, H. C. Synthetic architecture of interior space for inorganic nanostructures. / J. Mater. Chem. 2006, / 16, 649鈥?62. CrossRef
    21. Zeng, H. C. Ostwald ripening: A synthetic approach for hollow nanomaterials. / Curr. Nanosci. 2007, / 3, 177鈥?81. CrossRef
    22. Caruso, F. Hollow capsule processing through colloidal templating and self-assembly. / Chem. Eur. J. 2000, / 6, 413鈥?19. CrossRef
    23. Macdonald, J. E.; Sadan, M. B.; Houben, L.; Popov, I.; Banin, U. Hybrid nanoscale inorganic cages. / Nat. Mater. 2010, / 9, 810鈥?15. CrossRef
    24. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. / Science 2014, / 343, 1339鈥?343. science.1249061" target="_blank" title="It opens in new window">CrossRef
    25. Han, L.; Liu, H.; Cui, P. L.; Peng, Z. J.; Zhang, S. J.; Yang, J. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. / Sci. Rep. 2014, / 4, 6414. CrossRef
    26. Zhdanov, V. P.; Kasemo, B. On the feasibility of strain-induced formation of hollows during hydriding or oxidation of metal nanoparticles. / Nano Lett. 2009, / 9, 2172鈥?176. CrossRef
    27. Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. / Adv. Mater. 2008, / 20, 3987鈥?019. CrossRef
    28. Zhao, Y.; Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. / Adv. Mater. 2009, / 21, 3621鈥?638. CrossRef
    29. Liu, H.; Qu, J. L.; Chen, Y. F.; Li, J. Q.; Ye, F.; Lee, J. Y.; Yang, J. Hollow and cage-bell structured nanomaterials of noble metals. / J. Am. Chem. Soc. 2012, / 134, 11602鈥?1610. CrossRef
    30. Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. / Nano Lett. 2004, / 4, 1733鈥?739. CrossRef
    31. Zheng, Y. Q.; Zeng, J.; Ruditskiy, A.; Liu, M. C.; Xia, Y. N. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. / Chem. Mater. 2014, / 26, 22鈥?3. CrossRef
    32. Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper Objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. / ACS Nano 2011, / 5, 8950鈥?957. CrossRef
    33. Huang, H. H.; Ni, X. P.; Loy, G. L.; Chew, C. H.; Tan, K. L.; Loh, F. C.; Deng, J. F.; Xu, G. Q. Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). / Langmuir 1996, / 12, 909鈥?12. CrossRef
    34. Akaighe, N.; MacCuspie, R. I.; Navarro, D. A.; Aga, D. S.; Banerjee, S.; Sohn, M.; Sharma, V. K. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. / Environ. Sci. Technol. 2011, / 45, 3895鈥?901. CrossRef
    35. Ostwald, W. Studien uber die bildung und umwandlung fester korper. / Z. Phys. Chem. 1897, / 22, 289鈥?30.
    36. Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. / Nat. Mater. 2005, / 4, 855鈥?63. CrossRef
    37. Huang, R.; Zhu, A. M.; Gong, Y.; Zhang, Q. G.; Liu, Q. L. Facile method to prepare monodispersed hollow PtAu sphere with TiO2 colloidal sphere as a template. / Ind. Eng. Chem. Res. 2013, / 52, 7432鈥?438. CrossRef
    38. Liu, H.; Ye, F.; Yang, J. A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors. / Ind. Eng. Chem. Res. 2014, / 53, 5925鈥?931. CrossRef
    39. Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. / J. Am. Chem. Soc. 2011, / 133, 6078鈥?089. CrossRef
    40. Mohl, M.; Dobo, D.; Kukovecz, A.; Konya, Z.; Kordas, K.; Wei, J. Q.; Vajtai, R.; Ajayan, P. M. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. / J. Phys. Chem. C 2011, / 115, 9403鈥?409. CrossRef
    41. Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.; Powell, C. J.; Rumble, J. R. / NIST standard reference database 20, version 3.2 (web version).
    42. Parsons, R.; VanderNoot, T. The oxidation of small organic molecules: A survey of recent fuel cell related research. / J. Electroanal. Chem. Interfacial Electrochem. 1988, / 257, 9鈥?5. CrossRef
    43. de Brujin, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. / Fuel Cells 2008, / 8, 3鈥?2. CrossRef
    44. Antolini, E.; Lopes, T.; Gonzalez, E. R. An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. / J. Alloys Compd. 2008, / 461, 253鈥?62. CrossRef
    45. Yang, J. H.; Yang, J.; Ying, J. Y. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction. / ACS Nano 2012, / 6, 9373鈥?382. CrossRef
    46. Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. / Nano Res. 2013, / 6, 571鈥?80. CrossRef
    47. Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. / Nano Res. 2013, / 6, 822鈥?35. CrossRef
    48. Liu, H.; Yang, J. Bimetallic Ag-hollow Pt heterodimers / via inside-out migration of Ag in core-shell Ag-Pt nanoparticles at elevated temperature. / J. Mater. Chem. A 2014, / 2, 7075鈥?081. CrossRef
    49. Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. / Sci. Rep. 2014, / 4, 3969.
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for a wide variety of applications. Herein, we present a facile, general, and cost-effective strategy for the synthesis of noble metal nanoparticles with hollow structures, which is based on the inside-out diffusion of Ag in solid-state core-shell nanoparticles. This approach starts with the preparation of core-shell nanoparticles with Ag residing in the core region, which are then loaded on a solid substrate and aged in air to allow the inside-out diffusion of Ag from the core region, leading to the formation of monometallic or alloy noble metal nanoparticles with a hollow interior. The synthesis was carried out at room temperature and could be achieved on different solid substrates. In particular, the inside-out diffusion of Ag calls for specific concern with respect to the evaluation of the catalytic performance of the Ag-based core-shell nanoparticles since it may potentially interfere with the physical and chemical properties of the core-shell particles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700