用户名: 密码: 验证码:
Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus
详细信息    查看全文
  • 作者:Andrej Frolov ; Matthias Blüher ; Ralf Hoffmann
  • 关键词:Amadori products ; Electrospray ionization (ESI) ; Label ; free quantification ; Tandem mass spectrometry ; Type 2 diabetes mellitus (T2DM)
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:406
  • 期:24
  • 页码:5755-5763
  • 全文大小:478 KB
  • 参考文献:1. Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Prog Horm Res 56:1-1 CrossRef
    2. Hodge JE (1955) The Amadori rearrangement. Adv Carbohydr Chem 10:169-05
    3. Grillo MA, Colombatto S (2007) Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases. Amino Acids 35:29-6 CrossRef
    4. Ahmed N, Thornalley PJ (2007) Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab 9:233-45 CrossRef
    5. Hartog JW, Voors AA, Bakker SJ, Smit AJ, van Veldhuisen DJ (2007) Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 9:1146-155 CrossRef
    6. Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317:1- CrossRef
    7. Price CL, Knight SC (2007) Advanced glycation: a novel outlook on atherosclerosis. Curr Pharm Des 13:3681-687 CrossRef
    8. Thornalley PJ, Rabbani N (2009) Highlights and hotspots of protein glycation in end-stage renal disease. Semin Dial 22:400-04 CrossRef
    9. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058-070 CrossRef
    10. Schleicher ED, Vogt BW (1990) Standardization of serum fructosamine assays. Clin Chem 36:136-39
    11. Karachalias N, Babaei-Jadidi R, Ahmed N, Thornalley PJ (2003) Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina, and peripheral nerve of streptozotocin-induced diabetic rats. Biochem Soc Trans 31:1423-425 CrossRef
    12. Gabbay KH, Hasty K, Breslow JL, Ellison RC, Bunn HF, Gallop PM (1977) Glycosylated hemoglobins and long-term blood glucose control in diabetes mellitus. J Clin Endocrinol Metab 44:859-64 CrossRef
    13. Furusyo N, Koga T, Ai M, Otokozawa S, Kohzuma T, Ikezaki H, Schaefer EJ, Hayashi J (2011) Utility of glycated albumin for the diagnosis of diabetes mellitus in a Japanese population study: results from the Kyushu and Okinawa Population Study (KOPS). Diabetologia 54:3028-036 CrossRef
    14. Ionescu-Tirgoviste C, Guja C, Ioacara S, Dumitrescu D, Tomescu I (2004) Continuous glucose monitoring: physiologic and pathophysiologic significance. Rom J Intern Med 42:381-93
    15. Koga M, Murai J, Saito H, Kasayama S (2010) Glycated albumin and glycated hemoglobin are influenced differently by endogenous insulin secretion in patients with type 2 diabetes. Diabetes Care 33:270-72 CrossRef
    16. Baker JR, Metcalf PA, Johnson RN, Newman D, Rietz P (1985) Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clin Chem 31:1550-554
    17. Kouzuma T, Usami T, Yamakoshi M, Takahashi M, Imamura S (2002) An enzymatic method for the measurement of glycated albumin in biological samples. Clin Chim Acta 324:61-1 CrossRef
    18. Schleicher E, Wieland OH (1981) Specific quantitation by HPLC of protein (lysine) bound glucose in human serum albumin and other glycosylated proteins. J Clin Chem Clin Biochem 19:81-7
    19. Ikeda K, Sakamoto Y, Kawasaki Y, Miyake T, Tanaka K, Urata T, Katayama Y, Ueda S, Horiuchi S (1998) Determination of glycated albumin by enzyme-linked boronate immunoassay (ELBIA). Clin Chem 44:256-63
    20. Shima K, Ito N, Abe F, Hirota M, Yano M, Yamamoto Y, Uchida T, Noguchi K (1988) High-performance liquid chromatographic assay of serum glycated albumin. Diabetologia 31:627-31 CrossRef
    21. Zhang Q, Monroe ME, Schepmoes AA, Clauss TR, Gritsenko MA, Meng D, Petyuk VA, Smith RD, Metz TO (2011) Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res 10:3076-088 CrossRef
    22. Rondeau P, Bourdon E (2011) The glycation of albumin: structural and functional impacts. Biochimie 93:645-58 CrossRef
    23. Barnaby OS, Cerny RL, Clarke W, Hage DS (2011) Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta 412:277-85 CrossRef
    24. Frolov A, Hoffmann R (2010) Identification and relative quantification of specific glycation sites in human serum albumin. Anal Bioanal Chem 397:2349-356 CrossRef
    25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54 CrossRef
    26. Frolov A, Hoffmann P, Hoffmann R (2006) Fragmentation behavior of glycated peptides derived from / D-glucose, / D-fructose and / D-ribose in tandem mass spectrometry. J Mass Spectrom 41:1459-469 CrossRef
    27. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017-031 CrossRef
    28. Strader MB, Tabb DL, Hervey WJ, Pan C, Hurst GB (2006) Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. Anal Chem 78:125-34 CrossRef
    29. Bollineni RC, Hoffmann R, Fedorova M (2011) Identification of protein carbonylation sites by two-dimensional liquid chromatography in combination with M. J Proteom 74:2338-350 CrossRef
    30. Zhang Q, Schepmoes AA, Brock JW, Wu S, Moore RJ, Purvine SO, Baynes JW, Smith RD, Metz TO (2008) Improved methods for the enrichment and analysis of glycated peptides. Anal Chem 80:9822-829 CrossRef
    31. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteom 5:573-88 CrossRef
    32. Zhang N, Li L (2004) Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation. Rapid Commun Mass Spectrom 18:889-96 CrossRef
    33. Frolov A, Hoffmann R (2008) Analysis of Amadori peptides enriched by boronic acid affinity chromatography. Ann NY Acad Sci 1126:253-56 CrossRef
    34. Zhang Q, Tang N, Schepmoes AA, Phillips LS, Smith RD, Metz TO (2008) Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes. J Proteome Res 7:2025-032 CrossRef
    35. Acharya AS, Manning JM (1980) Amadori rearrangement of glyceraldehyde-hemoglobin Schiff base adducts. A new procedure for the determination of ketoamine adducts in proteins. J Biol Chem 255:7218-224
  • 作者单位:Andrej Frolov (1) (2)
    Matthias Blüher (3)
    Ralf Hoffmann (1) (2)

    1. Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Johannisallee 29, 04103, Leipzig, Germany
    2. Center for Biotechnology and Biomedicine (BBZ), Deutscher Platz 5, 04103, Leipzig, Germany
    3. Department of Medicine, Endocrinology, Universit?t Leipzig, Liebigstra?e 20, 04103, Leibzig, Germany
  • ISSN:1618-2650
文摘
Glucose can modify proteins in human blood, forming early glycation products (e.g., Amadori compounds), which can slowly degrade to advanced glycation endproducts (AGEs). AGEs contribute significantly to complications of diabetes mellitus and, thus, represent markers of advanced disease stages. They are, however, currently unsuitable for early diagnosis and therapeutic monitoring. Here, we report sensitive strategies to identify and relatively quantify protein glycation sites in human plasma samples obtained from type 2 diabetes mellitus (T2DM) patients and age-matched nondiabetic individuals using a bottom-up approach. Specifically, Amadori peptides were enriched from tryptic digests by boronic acid affinity chromatography, separated by reversed-phase chromatography, and analyzed on-line by high-resolution mass spectrometry. Among the 52 Amadori peptides studied here were 20 peptides resembling 19 glycation sites in six human proteins detected at statistically significantly higher levels in T2DM than in the normoglycemic controls. Four positions appeared to be unique for T2DM within the detection limit. All 19 glycation sites represent promising new biomarker candidates for early diagnosis of T2DM and adequate therapeutic control, as they may indicate early metabolic changes preceding T2DM. Graphical Abstract ?/em>

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700