用户名: 密码: 验证码:
Deep geothermal: The ‘Moon Landing-mission in the unconventional energy and minerals space
详细信息    查看全文
  • 作者:Klaus Regenauer-Lieb ; Andrew Bunger ; Hui Tong Chua…
  • 关键词:geothermal energy ; enhanced geothermal systems ; fracture mechanics ; creep ; dissolution ; precipitation
  • 刊名:Journal of Earth Science
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:26
  • 期:1
  • 页码:2-10
  • 全文大小:1,023 KB
  • 参考文献:1. Abe, H., Niitsuma, H., Murphy, H., 1999. Summary of Discussions, Structured Academic Review of HDR/HWR Reservoirs. / Geothermics, 28: 671-76 CrossRef
    2. Alevizos, S., Poulet, T., Veveakis, E., 2014. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 1. Theory and Steady State Considerations. / Journal of Geophysical Research: / Solid Earth, 119(6): 4558-582
    3. Ashby, M. F., Gandhi, C., Taplin, D. M. R., 1979. Overview No. 3. / Acta Metallurgica, 27: 699-29 CrossRef
    4. Brown, D., DuTeaux, R., Kruger, P., et al., 1999. Fluid Circulation and Heat Extraction from Engineered Geothermal Reservoirs. / Geothermics, 28: 553-72 CrossRef
    5. Bunger, A. P., Zhang, X., Jeffrey, R., 2012. Parameters Affecting the Interaction among Closely Spaced Hydraulic Fractures. / SPE Journal, 17: 292-06 CrossRef
    6. Cuderman, J. F., Cooper, P. W., Chen, E. P., et al., 1981. A Multiple Fracturing Technique for Enhanced Gas Recovery. International Gas Conference, Los Angeles
    7. Dyskin, A., Pasternak, E., 2008. Rotational Mechanism of In-Plane Shear Crack Growth in Rocks under Compression. In: Potvin, Y., Carter, J., Dyskin, A., et al., eds., 1st Southern Hemisphere International Rock Mechanics Symposium SHIRMS 2008, Perth. 111-20
    8. Dyskin, A., Pasternak, E., 2010. Cracks in Cosserat Continuum-Macroscopic Modelling. In: Maugin, G., Metrikine, A., eds., Mechanics of Generalized Continua: One Hundred Years after the Cosserats. Springer, New York. 35-2
    9. Dyskin, A., Pasternak, E., 2013. Mechanism of In-Plane Fracture Growth in Particulate Materials Based on Relative Particle Rotations. Proc. 13th International Conference on Fracture, Bejing. S09-03
    10. Dyskin, A., Pasternak, E., 2014. Energy Criterion of In-Plane Fracture Propagation in Geomaterials with Rotating Particles. / Proc. IWBDG, 14-27
    11. Dyskin, A., Pasternak, E., Bunger, A., et al., 2013. Blue Shift in the Spectrum of Arrival Times of Acoustic Signals Emitted during Laboratory Hydraulic Fracturing. In: Bunger, A. P., McLennan, J., Jeffrey, R., eds., The International Conference for Effective and Sustainable Hydraulic Fracturing. 467-76
    12. Fowler, A. C., Yang, X. S., 2003. Dissolution/Precipitation Mechanisms for Diagenesis in Sedimentary Basins. / Journal of Geophysical Research: / Solid Earth, 108: 2509 CrossRef
    13. Fusseis, F., Regenauer-Lieb, K., Liu, J., et al., 2009. Creep Cavitation can Establish a Granular Fluid Pump through the Middle Crust. / Nature, 459: 974-77 CrossRef
    14. Gaede, O., Karrech, A., Regenauer-Lieb, K., 2013. Anisotropic Damage Mechanics as a Novel Approach to Improve Pre- and Post-Failure Borehole Stability Analysis. / Geophysical Journal International, 193: 1095-109 CrossRef
    15. Genter, A., Evans, K., Cuenot, N., et al., 2010. Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS). / Comptes Rendus Geoscience, 342: 502-16 CrossRef
    16. Ghandi, C., Ashby, M. F., 1979. Overview No. 5 Fracture-Mechanism Maps for Materials which Cleave: F. C. C., B. C. C. and H. C. P. Metals and Ceramics. / Acta Metallurgica, 27: 1565-602 CrossRef
    17. Gratier, J. P., Dysthe, D., Renard, F., 2013. The Role of Pressure Solution Creep in the Ductility of the Earth’s Upper Crust. / Advances in Geophysics, 54: 47-79 CrossRef
    18. Haimson, B., 2006. Micromechanisms of Borehole Instability Leading to Breakouts in Rocks. / International Journal of Rock Mechanics & Mining Sciences, 44(2): 157-73 CrossRef
    19. Karrech, A., Regenauer-Lieb, K., Poulet, T., 2011. Continuum Da
  • 刊物主题:Earth Sciences, general; Geotechnical Engineering & Applied Earth Sciences; Biogeosciences; Geochemistry; Geology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1867-111X
文摘
Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700