用户名: 密码: 验证码:
Predicting initial formation temperature for deep well engineering with a new method
详细信息    查看全文
  • 作者:Fuzong Zhou ; Yucheng Xiong ; Ming Tian
  • 关键词:initial formation temperature ; deep well ; thermal conductivity ; radiogenic heat production
  • 刊名:Journal of Earth Science
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:26
  • 期:1
  • 页码:108-115
  • 全文大小:884 KB
  • 参考文献:1. Akpan, A. E., 2014. Estimation of Subsurface Temperatures in the Tattapani Geothermal Field, Central India, from Limited Volume of Magnetotelluric Data and Borehole Thermograms Using a Constructive Back-Propagation Neural Network. / Earth Interactions, 18: 1-6 CrossRef
    2. Andaverde, J., Verma, S. P., Santoyo, E., 2005. Uncertainty Estimates of Static Formation Temperature in Borehole and Evaluation of Regression Models. / Geophys. J. Int., 160: 1112-122 CrossRef
    3. Ascencio, F., Garcia, A., Rivera, J., et al., 1994. Estimation of Undisturbed Formation Temperatures under Spherical-Radial Heat Flow Conditions. / Geothermics, 23: 317-26 CrossRef
    4. Bassam, A., Santoyo, E., Andaverde, J., et al., 2010. Estimation of Static Formation Temperatures in Geothermal Wells by Using an Artificial Neural Network Approach. / Comput. Geosci-UK, 36: 1191-199 CrossRef
    5. Brennand, A. W., 1984. A New Method for the Analysis of Static Formation Temperature Test. In: Proceedings of the 6th New Zealand Geothermal Workshop, Auckland
    6. Carslaw, H. S., Jaeger, J. C., 1959. Conduction of Heat in Solids. Oxford University Press, London
    7. ?ermák, V., Bodri, L., 1986. Two-Dimensional Temperature Modelling along Five East-European Geotraverses. / J. Geodyn., 5: 133-63 CrossRef
    8. Chugunov, V., Fomin, S., Hashida, T., 2003. Heat Flow Rate at a Bore-Face and Temperature in the Multi-Layer Media Surrounding a Borehole. / Int. J. Heat Mass Tran., 46: 4769-778 CrossRef
    9. Clauser, C., Giese, P., Huenges, E., et al., 1997. The Thermal Regime of the Crystalline Continental Crust: Implications from the KTB. / J. Geophys. Res., 102: 18417-8441 CrossRef
    10. Cong, B., Zhai, M., Carswell, D. A., et al., 1995. Peotrgenesis of Ultrahigh-Pressure Rocks and Their Contry Rocks at Shuanghe in Dabieshan, Central China. / Eur. J. Mineral., 7: 119-38 CrossRef
    11. Dowdle, W. L., Cobb, W. M., 1975. Static Formation Temperature from Well Logs—An Empirical Method. / J. Petrol. Tech., 27: 1326-330 CrossRef
    12. Espinosa-Paredes, G., Garcia-Gutierrez, A., 2003. Estimation of Static Formation Temperatures in Geothermal Wells. / Energ. Convers. Manage., 44: 1343-355 CrossRef
    13. Furlong, K., Chapman, D. S., 1987. Thermal State of the Lithosphere. / Rev. Geophys., 25: 1255-264 CrossRef
    14. Ge, S., 1998. Estimation of Groundwater Velocity in Fracture Zones from Well Temperature Profiles. / J. Volcanol. Geoth. Res., 84: 93-01 CrossRef
    15. Gorman, J. M., Abraham, J. P., Sparrow, E. M., 2014. A Novel, Comprehensive Numerical Simulation for Predicting Temperatures within Boreholes and the Adjoining Rock Bed. / Geothermics, 50: 213-19 CrossRef
    16. Hasan, A. R., Kabir, C. S., 2010. Modeling Two-Phase Fluid and Heat Flows in Geothermal Wells. / J. Petrol. Sci. Eng., 71: 77-6 CrossRef
    17. He, L. J., Hu, S. B., Yang, W. C., et al., 2006. Temperature Measurement in the Main Hole of the Chinese Continental Scientific Drilling. / Chinese J. Geophys., 49(3): 745-52 (in Chinese with English Abstract)
    18. Ketcham, R. A., 1996. Distribution of Heat Producing Elements in the Upper and Middle Crust of Southern and West Central Arizona: Evidence from the Core Complexes. / J. Geophys. Res., 101: 1361
  • 刊物主题:Earth Sciences, general; Geotechnical Engineering & Applied Earth Sciences; Biogeosciences; Geochemistry; Geology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1867-111X
文摘
With the progress of science and technology, human beings explore the energy underground with thousands of meters. As a thermophysical parameter, initial formation temperature (IFT) plays an essential role in deep well engineering. However, it is not easy to predict the IFT accurately before drilling. This work uses a new method to analyze the effect factors of the underground temperature field, and assumes an artificial surface to eliminate the disturbance of the human errors and equipment errors on the surface temperature and thermal conductivity. Considering different distributions of the formation thermal conductivity and the rock radiogenic heat production, an optimized model was established. With this model, the paper predicted the bottom temperature of the main hole of the Chinese Continental Scientific Drilling (CCSD) as 132.80 °C at 4 725 m depth with 0.5% error. When the thermal conduction is dominant in the formation, this simple method can predict the IFT distribution effectively for deep well in the exploration stage. However, it is almost impossible to avoid aquifers in the formation of drilling deep well, an existing drillhole including groundwater is needed to predict for testing the model’s accuracy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700