用户名: 密码: 验证码:
Using zebrafish as the model organism to understand organ regeneration
详细信息    查看全文
  • 作者:WenChao Shi (1)
    ZhiBing Fang (1)
    Li Li (1)
    LingFei Luo (1)

    1. Key Laboratory of Freshwater Fish Reproduction and Development
    ; Ministry of Education ; Laboratory of Molecular Developmental Biology ; School of Life Sciences ; Southwest University ; Chongqing ; 400715 ; China
  • 关键词:organ regeneration ; zebrafish ; fin ; heart ; liver ; CNS
  • 刊名:Science China Life Sciences
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:4
  • 页码:343-351
  • 全文大小:745 KB
  • 参考文献:1. Poss, KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11: pp. 710-722
    2. Tal, TL, Franzosa, JA, Tanguay, RL (2010) Molecular signaling networks that choreograph epimorphic fin regeneration in zebrafish 鈥?a mini-review. Gerontology 56: pp. 231-240
    3. Goessling, W, North, TE (2014) Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Dis Model Mech 7: pp. 769-776
    4. Grunwald, DJ, Eisen, JS (2002) Headwaters of the zebrafish鈥攅mergence of a new model vertebrate. Nat Rev Genet 3: pp. 717-724
    5. Driever, W, Solnica-Krezel, L, Schier, AF, Neuhauss, SC, Malicki, J, Stemple, DL, Stainier, DY, Zwartkruis, F, Abdelilah, S, Rangini, Z, Belak, J, Boggs, C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123: pp. 37-46
    6. Haffter, P, Granato, M, Brand, M, Mullins, MC, Hammerschmidt, M, Kane, DA, Odenthal, J, Eeden, FJ, Jiang, YJ, Heisenberg, CP, Kelsh, RN, Furutani-Seiki, M, Vogelsang, E, Beuchle, D, Schach, U, Fabian, C, N眉sslein-Volhard, C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: pp. 1-36
    7. Stainier, DY, Fouquet, B, Chen, JN, Warren, KS, Weinstein, BM, Meiler, SE, Mohideen, MA, Neuhauss, SC, Solnica-Krezel, L, Schier, AF, Zwartkruis, F, Stemple, DL, Malicki, J, Driever, W, Fishman, MC (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123: pp. 285-292
    8. Brockerhoff, SE, Fadool, JM (2011) Genetics of photoreceptor degeneration and regeneration in zebrafish. Cell Mol Life Sci 68: pp. 651-659
    9. Becker, T, Becker, CG (2014) Axonal regeneration in zebrafish. Curr Opin Neurobiol 27C: pp. 186-191
    10. Poss, KD, Wilson, LG, Keating, MT (2002) Heart regeneration in zebrafish. Science 298: pp. 2188-2190
    11. Poss, KD, Keating, MT, Nechiporuk, A (2003) Tales of regeneration in zebrafish. Dev Dyn 226: pp. 202-210
    12. McCampbell, KK, Wingert, RA (2014) New tides: using zebrafish to study renal regeneration. Transl Res 163: pp. 109-122
    13. Kizil, C, Kaslin, J, Kroehne, V, Brand, M (2012) Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 72: pp. 429-461
    14. Kikuchi, K (2014) Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Res 13: pp. 542-555
    15. Matrone, G, Taylor, JM, Wilson, KS, Baily, J, Love, GD, Girkin, JM, Mullins, JJ, Tucker, CS, Denvir, MA (2013) Laser-targeted ablation of the zebrafish embryonic ventricle: a novel model of cardiac injury and repair. Int J Cardiol 168: pp. 3913-3919
    16. Kurita, R, Sagara, H, Aoki, Y, Link, BA, Arai, K, Watanabe, S (2003) Suppression of lens growth by alphaA-crystallin promoter-driven expression of diphtheria toxin results in disruption of retinal cell organization in zebrafish. Dev Biol 255: pp. 113-127
    17. Slanchev, K, Stebler, J, Cueva-Mendez, G, Raz, E (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci USA 102: pp. 4074-4079
    18. Bulina, ME, Chudakov, DM, Britanova, OV, Yanushevich, YG, Staroverov, DB, Chepurnykh, TV, Merzlyak, EM, Shkrob, MA, Lukyanov, S, Lukyanov, KA (2006) A genetically encoded photosensitizer. Nat Biotechnol 24: pp. 95-99
    19. Pisharath, H (2007) Validation of nitroreductase, a prodrug-activating enzyme, mediated cell death in embryonic zebrafish (Danio rerio). Comp Med 57: pp. 241-246
    20. Curado, S, Stainier, DY, Anderson, RM (2008) Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc 3: pp. 948-954
    21. Curado, S, Anderson, RM, Jungblut, B, Mumm, J, Schroeter, E, Stainier, DY (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236: pp. 1025-1035
    22. Lush, ME, Piotrowski, T (2014) Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 243: pp. 1187-1202
    23. Nechiporuk, A, Keating, MT (2002) A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development 129: pp. 2607-2617
    24. Akimenko, MA, Mari-Beffa, M, Becerra, J, Geraudie, J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226: pp. 190-201
    25. Iovine, MK (2007) Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol 3: pp. 613-618
    26. Singh, SP, Holdway, JE, Poss, KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22: pp. 879-886
    27. Geurtzen, K, Knopf, F, Wehner, D, Huitema, LF, Schulte-Merker, S, Weidinger, G (2014) Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development 141: pp. 2225-2234
    28. Kawakami, Y, Rodriguez, EC, Raya, M, Kawakami, H, Marti, M, Dubova, I, Izpisua Belmonte, JC (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20: pp. 3232-3237
    29. Poss, KD, Shen, J, Keating, MT (2000) Induction of lef1 during zebrafish fin regeneration. Dev Dyn 219: pp. 282-286
    30. Stoick-Cooper, CL, Weidinger, G, Riehle, KJ, Hubbert, C, Major, MB, Fausto, N, Moon, RT (2007) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134: pp. 479-489
    31. Mathew, LK, Sengupta, S, Kawakami, A, Andreasen, EA, Lohr, CV, Loynes, CA, Renshaw, SA, Peterson, RT, Tanguay, RL (2007) Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem 282: pp. 35202-35210
    32. Chen, B, Dodge, ME, Tang, W, Lu, J, Ma, Z, Fan, CW, Wei, S, Hao, W, Kilgore, J, Williams, NS, Roth, MG, Amatruda, JF, Chen, C, Lum, L (2009) Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5: pp. 100-107
    33. Lee, Y, Grill, S, Sanchez, A, Murphy-Ryan, M, Poss, KD (2005) Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132: pp. 5173-5183
    34. Whitehead, GG, Makino, S, Lien, CL, Keating, MT (2005) fgf20 is essential for initiating zebrafish fin regeneration. Science 310: pp. 1957-1960
    35. Geraudie, J, Monnot, MJ, Brulfert, A, Ferretti, P (1995) Caudal fin regeneration in wild type and long-fin mutant zebrafish is affected by retinoic acid. Int J Dev Biol 39: pp. 373-381
    36. White, JA, Boffa, MB, Jones, B, Petkovich, M (1994) A zebrafish retinoic acid receptor expressed in the regenerating caudal fin. Development 120: pp. 1861-1872
    37. Wehner, D, Cizelsky, W, Vasudevaro, MD, Ozhan, G, Haase, C, Kagermeier-Schenk, B, Roder, A, Dorsky, RI, Moro, E, Argenton, F, K眉hl, M, Weidinger, G (2014) Wnt/beta-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin. Cell Rep 6: pp. 467-481
    38. Thatcher, EJ, Paydar, I, Anderson, KK, Patton, JG (2008) Regulation of zebrafish fin regeneration by microRNAs. Proc Natl Acad Sci USA 105: pp. 18384-18389
    39. Yin, VP, Thomson, JM, Thummel, R, Hyde, DR, Hammond, SM, Poss, KD (2008) Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev 22: pp. 728-733
    40. Yin, VP, Poss, KD (2008) New regulators of vertebrate appendage regeneration. Curr Opin Genet Dev 18: pp. 381-386
    41. Varga, M, Sass, M, Papp, D, Takacs-Vellai, K, Kobolak, J, Dinnyes, A, Klionsky, DJ, Vellai, T (2014) Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ 21: pp. 547-556
    42. Kujawski, S, Lin, W, Kitte, F, Bormel, M, Fuchs, S, Arulmozhivarman, G, Vogt, S, Theil, D, Zhang, Y, Antos, CL (2014) Calcineurin regulates coordinated outgrowth of zebrafish regenerating fins. Dev Cell 28: pp. 573-587
    43. Gupta, V, Poss, KD (2012) Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 484: pp. 479-484
    44. Jopling, C, Sleep, E, Raya, M, Marti, M, Raya, A, Izpisua Belmonte, JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: pp. 606-609
    45. Kikuchi, K, Holdway, JE, Werdich, AA, Anderson, RM, Fang, Y, Egnaczyk, GF, Evans, T, Macrae, CA, Stainier, DY, Poss, KD (2010) Primary contribution to zebrafish heart regeneration by gata4 + cardiomyocytes. Nature 464: pp. 601-605
    46. Gonzalez-Rosa, JM, Peralta, M, Mercader, N (2012) Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol 370: pp. 173-186
    47. Kikuchi, K, Gupta, V, Wang, J, Holdway, JE, Wills, AA, Fang, Y, Poss, KD (2011) tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138: pp. 2895-2902
    48. Zhang, R, Han, P, Yang, H, Ouyang, K, Lee, D, Lin, YF, Ocorr, K, Kang, G, Chen, J, Stainier, DY, Yelon, D, Chi, NC (2013) In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498: pp. 497-501
    49. Itou, J, Oishi, I, Kawakami, H, Glass, TJ, Richter, J, Johnson, A, Lund, TC, Kawakami, Y (2012) Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 139: pp. 4133-4142
    50. Wang, J, Karra, R, Dickson, AL, Poss, KD (2013) Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol 382: pp. 427-435
    51. Zhao, L, Borikova, AL, Ben-Yair, R, Guner-Ataman, B, MacRae, CA, Lee, RT, Burns, CG, Burns, CE (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA 111: pp. 1403-1408
    52. Jopling, C, Sune, G, Faucherre, A, Fabregat, C, Izpisua Belmonte, JC (2012) Hypoxia induces myocardial regeneration in zebrafish. Circulation 126: pp. 3017-3027
    53. Han, P, Zhou, XH, Chang, N, Xiao, CL, Yan, S, Ren, H, Yang, XZ, Zhang, ML, Wu, Q, Tang, B, Diao, JP, Zhu, X, Zhang, C, Li, CY, Cheng, H, Xiong, JW (2014) Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res 24: pp. 1091-1107
    54. Yin, VP, Lepilina, A, Smith, A, Poss, KD (2012) Regulation of zebrafish heart regeneration by miR-133. Dev Biol 365: pp. 319-327
    55. Becker, CG, Becker, T (2008) Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci 26: pp. 71-80
    56. Fleisch, VC, Fraser, B, Allison, WT (2011) Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species. Biochim Biophys Acta 1812: pp. 364-380
    57. Kroehne, V, Freudenreich, D, Hans, S, Kaslin, J, Brand, M (2011) Regeneration of the adult zebrafish brain from neurogenic radial gliatype progenitors. Development 138: pp. 4831-4841
    58. Kishimoto, N, Shimizu, K, Sawamoto, K (2012) Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech 5: pp. 200-209
    59. Zou, S, Tian, C, Ge, S, Hu, B (2013) Neurogenesis of retinal ganglion cells is not essential to visual functional recovery after optic nerve injury in adult zebrafish. PLoS One 8: pp. e57280
    60. Fujikawa, C, Nagashima, M, Mawatari, K, Kato, S (2012) HSP70 gene expression in the zebrafish retina after optic nerve injury: a comparative study under heat shock stresses. Adv Exp Med Biol 723: pp. 663-668
    61. Nagashima, M, Fujikawa, C, Mawatari, K, Mori, Y, Kato, S (2011) HSP70, the earliest-induced gene in the zebrafish retina during optic nerve regeneration: its role in cell survival. Neurochem Int 58: pp. 888-895
    62. Kato, S, Matsukawa, T, Koriyama, Y, Sugitani, K, Ogai, K (2013) A molecular mechanism of optic nerve regeneration in fish: the retinoid signaling pathway. Prog Retin Eye Res 37: pp. 13-30
    63. Goldshmit, Y, Sztal, TE, Jusuf, PR, Hall, TE, Nguyen-Chi, M, Currie, PD (2012) Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci 32: pp. 7477-7492
    64. Becker, T, Wullimann, MF, Becker, CG, Bernhardt, RR, Schachner, M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377: pp. 577-595
    65. Dias, TB, Yang, YJ, Ogai, K, Becker, T, Becker, CG (2012) Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32: pp. 3245-3252
    66. Kuscha, V, Frazer, SL, Dias, TB, Hibi, M, Becker, T, Becker, CG (2012) Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. J Comp Neurol 520: pp. 3604-3616
    67. Fawcett, JW, Schwab, ME, Montani, L, Brazda, N, Muller, HW (2012) Defeating inhibition of regeneration by scar and myelin components. Handb Clin Neurol 109: pp. 503-522
    68. Becker, CG, Becker, T (2002) Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. J Neurosci 22: pp. 842-853
    69. Schweitzer, J, Gimnopoulos, D, Lieberoth, BC, Pogoda, HM, Feldner, J, Ebert, A, Schachner, M, Becker, T, Becker, CG (2007) Contactin1a expression is associated with oligodendrocyte differentiation and axonal regeneration in the central nervous system of zebrafish. Mol Cell Neurosci 35: pp. 194-207
    70. Schweitzer, J, Becker, T, Becker, CG, Schachner, M (2003) Expression of protein zero is increased in lesioned axon pathways in the central nervous system of adult zebrafish. Glia 41: pp. 301-317
    71. Kusik, BW, Hammond, DR, Udvadia, AJ (2010) Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells. Dev Dyn 239: pp. 482-495
    72. Becker, CG, Lieberoth, BC, Morellini, F, Feldner, J, Becker, T, Schachner, M (2004) L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci 24: pp. 7837-7842
    73. Veldman, MB, Bemben, MA, Thompson, RC, Goldman, D (2007) Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol 312: pp. 596-612
    74. Liu, D, Yu, Y, Schachner, M (2014) Ptena, but not Ptenb, reduces regeneration after spinal cord injury in adult zebrafish. Exp Neurol 261C: pp. 196-205
    75. Elsaeidi, F, Bemben, MA, Zhao, XF, Goldman, D (2014) Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J Neurosci 34: pp. 2632-2644
    76. Becker, CG, Schweitzer, J, Feldner, J, Schachner, M, Becker, T (2004) Tenascin-R as a repellent guidance molecule for newly growing and regenerating optic axons in adult zebrafish. Mol Cell Neurosci 26: pp. 376-389
    77. Graciarena, M, Dambly-Chaudiere, C, Ghysen, A (2014) Dynamics of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc Natl Acad Sci USA 111: pp. 1610-1615
    78. Bernardos, RL, Barthel, LK, Meyers, JR, Raymond, PA (2007) Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J Neurosci 27: pp. 7028-7040
    79. Fimbel, SM, Montgomery, JE, Burket, CT, Hyde, DR (2007) Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J Neurosci 27: pp. 1712-1724
    80. Thummel, R, Kassen, SC, Enright, JM, Nelson, CM, Montgomery, JE, Hyde, DR (2008) Characterization of Muller glia and neuronal progenitors during adult zebrafish retinal regeneration. Exp Eye Res 87: pp. 433-444
    81. Fausett, BV, Goldman, D (2006) A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina. J Neurosci 26: pp. 6303-6313
    82. Thummel, R, Enright, JM, Kassen, SC, Montgomery, JE, Bailey, TJ, Hyde, DR (2010) Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Exp Eye Res 90: pp. 572-582
    83. Curado, S, Stainier, DY (2010) deLiver鈥檌n regeneration: injury response and development. Semin Liver Dis 30: pp. 288-295
    84. Kan, NG, Junghans, D, Izpisua Belmonte, JC (2009) Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB J 23: pp. 3516-3525
    85. Sadler, KC, Krahn, KN, Gaur, NA, Ukomadu, C (2007) Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci USA 104: pp. 1570-1575
    86. North, TE, Babu, IR, Vedder, LM, Lord, AM, Wishnok, JS, Tannenbaum, SR, Zon, LI, Goessling, W (2010) PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci USA 107: pp. 17315-17320
    87. Goessling, W, North, TE, Loewer, S, Lord, AM, Lee, S, Stoick-Cooper, CL, Weidinger, G, Puder, M, Daley, GQ, Moon, RT, Zon, LI (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136: pp. 1136-1147
    88. Cox, AG, Saunders, DC, Kelsey, PB, Conway, AA, Tesmenitsky, Y, Marchini, JF, Brown, KK, Stamler, JS, Colagiovanni, DB, Rosenthal, GJ, Croce, KJ, North, TE, Goessling, W (2014) S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury. Cell Rep 6: pp. 56-69
    89. Zhu, Z, Chen, J, Xiong, JW, Peng, J (2014) Haploinsufficiency of Def activates p53-dependent TGFbeta signalling and causes scar formation after partial hepatectomy. PLoS One 9: pp. e96576
    90. Huang, M, Chang, A, Choi, M, Zhou, D, Anania, FA, Shin, CH (2014) Antagonistic interaction between Wnt and Notch activity modulates the regenerative capacity of a zebrafish fibrotic liver model. Hepatology 60: pp. 1753-1766
    91. Choi, TY, Ninov, N, Stainier, DY, Shin, D (2014) Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146: pp. 776-788
    92. He, J, Lu, H, Zou, Q, Luo, L (2014) Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146: pp. 789-800
    93. Goldsmith, MI, Iovine, MK, O鈥橰eilly-Pol, T, Johnson, SL (2006) A developmental transition in growth control during zebrafish caudal fin development. Dev Biol 296: pp. 450-457
    94. Tsai, SB, Tucci, V, Uchiyama, J, Fabian, NJ, Lin, MC, Bayliss, PE, Neuberg, DS, Zhdanova, IV, Kishi, S (2007) Differential effects of genotoxic stress on both concurrent body growth and gradual senescence in the adult zebrafish. Aging Cell 6: pp. 209-224
    95. Grandel, H, Kaslin, J, Ganz, J, Wenzel, I, Brand, M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295: pp. 263-277
    96. Pearson, BJ, Sanchez, AA (2008) Regeneration, stem cells, and the evolution of tumor suppression. Cold Spring Harb Symp Quant Biol 73: pp. 565-572
    97. Sanchez, AA, Yamanaka, S (2014) Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 157: pp. 110-119
    98. Kizil, C, Otto, GW, Geisler, R, Nusslein-Volhard, C, Antos, CL (2009) Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration. Dev Biol 325: pp. 329-340
    99. Millimaki, BB, Sweet, EM, Riley, BB (2010) Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear. Dev Biol 338: pp. 262-269
    100. Stewart, S, Tsun, ZY, Izpisua Belmonte, JC (2009) A histone demethylase is necessary for regeneration in zebrafish. Proc Natl Acad Sci USA 106: pp. 19889-19894
    101. Kizil, C, Kyritsis, N, Dudczig, S, Kroehne, V, Freudenreich, D, Kaslin, J, Brand, M (2012) Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev Cell 23: pp. 1230-1237
    102. Veldman, MB, Bemben, MA, Thompson, RC, Goldman, D (2007) Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol 312: pp. 596-612
    103. Hoehn, BD, Palmer, TD, Steinberg, GK (2005) Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke 36: pp. 2718-2724
    104. Iosif, RE, Ekdahl, CT, Ahlenius, H, Pronk, CJ, Bonde, S, Kokaia, Z, Jacobsen, SE, Lindvall, O (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26: pp. 9703-9712
    105. Kyritsis, N, Kizil, C, Zocher, S, Kroehne, V, Kaslin, J, Freudenreich, D, Iltzsche, A, Brand, M (2012) Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338: pp. 1353-1356
    106. Keightley, MC, Wang, CH, Pazhakh, V, Lieschke, GJ (2014) Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 56C: pp. 92-106
    107. Kurimoto, T, Yin, Y, Habboub, G, Gilbert, HY, Li, Y, Nakao, S, Hafezi-Moghadam, A, Benowitz, LI (2013) Neutrophils express oncomo-dulin and promote optic nerve regeneration. J Neurosci 33: pp. 14816-14824
    108. Chazaud, B (2014) Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 219: pp. 172-178
    109. Mosser, DM, Edwards, JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: pp. 958-969
    110. Li, L, Yan, B, Shi, YQ, Zhang, WQ, Wen, ZL (2012) Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J Biol Chem 287: pp. 25353-25360
    111. Petrie, TA, Strand, NS, Tsung-Yang, C, Rabinowitz, JS, Moon, RT (2014) Macrophages modulate adult zebrafish tail fin regeneration. Development 141: pp. 2581-2591
    112. Huang, P, Xiao, A, Tong, X, Zu, Y, Wang, Z, Zhang, B (2014) TALEN construction via 鈥淯nit Assembly鈥?method and targeted genome modifications in zebrafish. Methods 69: pp. 67-75
    113. Chang, N, Sun, C, Gao, L, Zhu, D, Xu, X, Zhu, X, Xiong, JW, Xi, JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23: pp. 465-472
    114. Zhang, L, Zhou, Q (2014) CRISPR/Cas technology: a revolutionary approach for genome engineering. Sci China Life Sci 57: pp. 639-640
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
The limited regenerative capacity of several organs, such as central nervous system (CNS), heart and limb in mammals makes related major diseases quite difficult to recover. Therefore, dissection of the cellular and molecular mechanisms underlying organ regeneration is of great scientific and clinical interests. Tremendous progression has already been made after extensive investigations using several model organisms for decades. Unfortunately, distance to the final achievement of the goal still remains. Recently, zebrafish became a popular model organism for the deep understanding of regeneration based on its powerful regenerative capacity, in particular the organs that are limitedly regenerated in mammals. Additionally, zebrafish are endowed with other advantages good for the study of organ regeneration. This review summarizes the recent progress in the study of zebrafish organ regeneration, in particular regeneration of fin, heart, CNS, and liver as the representatives. We also discuss reasons of the reduced regenerative capacity in higher vertebrate, the roles of inflammation during regeneration, and the difference between organogenesis and regeneration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700